| Step |
Hyp |
Ref |
Expression |
| 1 |
|
posqsqznn.1 |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) ∈ ℤ ) |
| 2 |
|
posqsqznn.2 |
⊢ ( 𝜑 → 𝐴 ∈ ℚ ) |
| 3 |
|
posqsqznn.3 |
⊢ ( 𝜑 → 0 < 𝐴 ) |
| 4 |
2
|
qred |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 5 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 6 |
5 4 3
|
ltled |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
| 7 |
4 6
|
sqrtsqd |
⊢ ( 𝜑 → ( √ ‘ ( 𝐴 ↑ 2 ) ) = 𝐴 ) |
| 8 |
7 2
|
eqeltrd |
⊢ ( 𝜑 → ( √ ‘ ( 𝐴 ↑ 2 ) ) ∈ ℚ ) |
| 9 |
|
zsqrtelqelz |
⊢ ( ( ( 𝐴 ↑ 2 ) ∈ ℤ ∧ ( √ ‘ ( 𝐴 ↑ 2 ) ) ∈ ℚ ) → ( √ ‘ ( 𝐴 ↑ 2 ) ) ∈ ℤ ) |
| 10 |
1 8 9
|
syl2anc |
⊢ ( 𝜑 → ( √ ‘ ( 𝐴 ↑ 2 ) ) ∈ ℤ ) |
| 11 |
7 10
|
eqeltrrd |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
| 12 |
|
elnnz |
⊢ ( 𝐴 ∈ ℕ ↔ ( 𝐴 ∈ ℤ ∧ 0 < 𝐴 ) ) |
| 13 |
11 3 12
|
sylanbrc |
⊢ ( 𝜑 → 𝐴 ∈ ℕ ) |