Step |
Hyp |
Ref |
Expression |
1 |
|
posqsqznn.1 |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) ∈ ℤ ) |
2 |
|
posqsqznn.2 |
⊢ ( 𝜑 → 𝐴 ∈ ℚ ) |
3 |
|
posqsqznn.3 |
⊢ ( 𝜑 → 0 < 𝐴 ) |
4 |
2
|
qred |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
5 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
6 |
5 4 3
|
ltled |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
7 |
4 6
|
sqrtsqd |
⊢ ( 𝜑 → ( √ ‘ ( 𝐴 ↑ 2 ) ) = 𝐴 ) |
8 |
7 2
|
eqeltrd |
⊢ ( 𝜑 → ( √ ‘ ( 𝐴 ↑ 2 ) ) ∈ ℚ ) |
9 |
|
zsqrtelqelz |
⊢ ( ( ( 𝐴 ↑ 2 ) ∈ ℤ ∧ ( √ ‘ ( 𝐴 ↑ 2 ) ) ∈ ℚ ) → ( √ ‘ ( 𝐴 ↑ 2 ) ) ∈ ℤ ) |
10 |
1 8 9
|
syl2anc |
⊢ ( 𝜑 → ( √ ‘ ( 𝐴 ↑ 2 ) ) ∈ ℤ ) |
11 |
7 10
|
eqeltrrd |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
12 |
|
elnnz |
⊢ ( 𝐴 ∈ ℕ ↔ ( 𝐴 ∈ ℤ ∧ 0 < 𝐴 ) ) |
13 |
11 3 12
|
sylanbrc |
⊢ ( 𝜑 → 𝐴 ∈ ℕ ) |