Metamath Proof Explorer


Theorem cxpgt0d

Description: A positive real raised to a real power is positive. (Contributed by SN, 6-Apr-2023)

Ref Expression
Hypotheses cxpgt0d.1 ( 𝜑𝐴 ∈ ℝ+ )
cxpgt0d.2 ( 𝜑𝑁 ∈ ℝ )
Assertion cxpgt0d ( 𝜑 → 0 < ( 𝐴𝑐 𝑁 ) )

Proof

Step Hyp Ref Expression
1 cxpgt0d.1 ( 𝜑𝐴 ∈ ℝ+ )
2 cxpgt0d.2 ( 𝜑𝑁 ∈ ℝ )
3 1 2 rpcxpcld ( 𝜑 → ( 𝐴𝑐 𝑁 ) ∈ ℝ+ )
4 3 rpgt0d ( 𝜑 → 0 < ( 𝐴𝑐 𝑁 ) )