Metamath Proof Explorer


Theorem cxpgt0d

Description: A positive real raised to a real power is positive. (Contributed by SN, 6-Apr-2023)

Ref Expression
Hypotheses cxpgt0d.1 ( 𝜑𝐴 ∈ ℝ+ )
cxpgt0d.2 ( 𝜑𝑁 ∈ ℝ )
Assertion cxpgt0d ( 𝜑 → 0 < ( 𝐴𝑐 𝑁 ) )

Proof

Step Hyp Ref Expression
1 cxpgt0d.1 ( 𝜑𝐴 ∈ ℝ+ )
2 cxpgt0d.2 ( 𝜑𝑁 ∈ ℝ )
3 1 relogcld ( 𝜑 → ( log ‘ 𝐴 ) ∈ ℝ )
4 2 3 remulcld ( 𝜑 → ( 𝑁 · ( log ‘ 𝐴 ) ) ∈ ℝ )
5 efgt0 ( ( 𝑁 · ( log ‘ 𝐴 ) ) ∈ ℝ → 0 < ( exp ‘ ( 𝑁 · ( log ‘ 𝐴 ) ) ) )
6 4 5 syl ( 𝜑 → 0 < ( exp ‘ ( 𝑁 · ( log ‘ 𝐴 ) ) ) )
7 1 rpcnd ( 𝜑𝐴 ∈ ℂ )
8 1 rpne0d ( 𝜑𝐴 ≠ 0 )
9 2 recnd ( 𝜑𝑁 ∈ ℂ )
10 7 8 9 cxpefd ( 𝜑 → ( 𝐴𝑐 𝑁 ) = ( exp ‘ ( 𝑁 · ( log ‘ 𝐴 ) ) ) )
11 6 10 breqtrrd ( 𝜑 → 0 < ( 𝐴𝑐 𝑁 ) )