Metamath Proof Explorer


Theorem cxpgt0d

Description: A positive real raised to a real power is positive. (Contributed by SN, 6-Apr-2023)

Ref Expression
Hypotheses cxpgt0d.1
|- ( ph -> A e. RR+ )
cxpgt0d.2
|- ( ph -> N e. RR )
Assertion cxpgt0d
|- ( ph -> 0 < ( A ^c N ) )

Proof

Step Hyp Ref Expression
1 cxpgt0d.1
 |-  ( ph -> A e. RR+ )
2 cxpgt0d.2
 |-  ( ph -> N e. RR )
3 1 relogcld
 |-  ( ph -> ( log ` A ) e. RR )
4 2 3 remulcld
 |-  ( ph -> ( N x. ( log ` A ) ) e. RR )
5 efgt0
 |-  ( ( N x. ( log ` A ) ) e. RR -> 0 < ( exp ` ( N x. ( log ` A ) ) ) )
6 4 5 syl
 |-  ( ph -> 0 < ( exp ` ( N x. ( log ` A ) ) ) )
7 1 rpcnd
 |-  ( ph -> A e. CC )
8 1 rpne0d
 |-  ( ph -> A =/= 0 )
9 2 recnd
 |-  ( ph -> N e. CC )
10 7 8 9 cxpefd
 |-  ( ph -> ( A ^c N ) = ( exp ` ( N x. ( log ` A ) ) ) )
11 6 10 breqtrrd
 |-  ( ph -> 0 < ( A ^c N ) )