Metamath Proof Explorer


Theorem cxpgt0d

Description: A positive real raised to a real power is positive. (Contributed by SN, 6-Apr-2023)

Ref Expression
Hypotheses cxpgt0d.1
|- ( ph -> A e. RR+ )
cxpgt0d.2
|- ( ph -> N e. RR )
Assertion cxpgt0d
|- ( ph -> 0 < ( A ^c N ) )

Proof

Step Hyp Ref Expression
1 cxpgt0d.1
 |-  ( ph -> A e. RR+ )
2 cxpgt0d.2
 |-  ( ph -> N e. RR )
3 1 2 rpcxpcld
 |-  ( ph -> ( A ^c N ) e. RR+ )
4 3 rpgt0d
 |-  ( ph -> 0 < ( A ^c N ) )