Metamath Proof Explorer


Theorem cxpgt0d

Description: A positive real raised to a real power is positive. (Contributed by SN, 6-Apr-2023)

Ref Expression
Hypotheses cxpgt0d.1 φ A +
cxpgt0d.2 φ N
Assertion cxpgt0d φ 0 < A N

Proof

Step Hyp Ref Expression
1 cxpgt0d.1 φ A +
2 cxpgt0d.2 φ N
3 1 2 rpcxpcld φ A N +
4 3 rpgt0d φ 0 < A N