Metamath Proof Explorer


Theorem cxpgt0d

Description: A positive real raised to a real power is positive. (Contributed by SN, 6-Apr-2023)

Ref Expression
Hypotheses cxpgt0d.1 φA+
cxpgt0d.2 φN
Assertion cxpgt0d φ0<AN

Proof

Step Hyp Ref Expression
1 cxpgt0d.1 φA+
2 cxpgt0d.2 φN
3 1 2 rpcxpcld φAN+
4 3 rpgt0d φ0<AN