Metamath Proof Explorer


Theorem rpcxpcld

Description: Positive real closure of the complex power function. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses rpcxpcld.1 φA+
rpcxpcld.2 φB
Assertion rpcxpcld φAB+

Proof

Step Hyp Ref Expression
1 rpcxpcld.1 φA+
2 rpcxpcld.2 φB
3 rpcxpcl A+BAB+
4 1 2 3 syl2anc φAB+