| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qdencl |
|- ( ( A ^c ( 1 / N ) ) e. QQ -> ( denom ` ( A ^c ( 1 / N ) ) ) e. NN ) |
| 2 |
1
|
3ad2ant3 |
|- ( ( A e. ZZ /\ N e. NN /\ ( A ^c ( 1 / N ) ) e. QQ ) -> ( denom ` ( A ^c ( 1 / N ) ) ) e. NN ) |
| 3 |
2
|
nnrpd |
|- ( ( A e. ZZ /\ N e. NN /\ ( A ^c ( 1 / N ) ) e. QQ ) -> ( denom ` ( A ^c ( 1 / N ) ) ) e. RR+ ) |
| 4 |
|
1rp |
|- 1 e. RR+ |
| 5 |
4
|
a1i |
|- ( ( A e. ZZ /\ N e. NN /\ ( A ^c ( 1 / N ) ) e. QQ ) -> 1 e. RR+ ) |
| 6 |
|
simp2 |
|- ( ( A e. ZZ /\ N e. NN /\ ( A ^c ( 1 / N ) ) e. QQ ) -> N e. NN ) |
| 7 |
6
|
nnzd |
|- ( ( A e. ZZ /\ N e. NN /\ ( A ^c ( 1 / N ) ) e. QQ ) -> N e. ZZ ) |
| 8 |
|
1exp |
|- ( N e. ZZ -> ( 1 ^ N ) = 1 ) |
| 9 |
7 8
|
syl |
|- ( ( A e. ZZ /\ N e. NN /\ ( A ^c ( 1 / N ) ) e. QQ ) -> ( 1 ^ N ) = 1 ) |
| 10 |
|
zcn |
|- ( A e. ZZ -> A e. CC ) |
| 11 |
10
|
3ad2ant1 |
|- ( ( A e. ZZ /\ N e. NN /\ ( A ^c ( 1 / N ) ) e. QQ ) -> A e. CC ) |
| 12 |
|
cxproot |
|- ( ( A e. CC /\ N e. NN ) -> ( ( A ^c ( 1 / N ) ) ^ N ) = A ) |
| 13 |
11 6 12
|
syl2anc |
|- ( ( A e. ZZ /\ N e. NN /\ ( A ^c ( 1 / N ) ) e. QQ ) -> ( ( A ^c ( 1 / N ) ) ^ N ) = A ) |
| 14 |
13
|
fveq2d |
|- ( ( A e. ZZ /\ N e. NN /\ ( A ^c ( 1 / N ) ) e. QQ ) -> ( denom ` ( ( A ^c ( 1 / N ) ) ^ N ) ) = ( denom ` A ) ) |
| 15 |
|
zq |
|- ( A e. ZZ -> A e. QQ ) |
| 16 |
|
qden1elz |
|- ( A e. QQ -> ( ( denom ` A ) = 1 <-> A e. ZZ ) ) |
| 17 |
15 16
|
syl |
|- ( A e. ZZ -> ( ( denom ` A ) = 1 <-> A e. ZZ ) ) |
| 18 |
17
|
ibir |
|- ( A e. ZZ -> ( denom ` A ) = 1 ) |
| 19 |
18
|
3ad2ant1 |
|- ( ( A e. ZZ /\ N e. NN /\ ( A ^c ( 1 / N ) ) e. QQ ) -> ( denom ` A ) = 1 ) |
| 20 |
14 19
|
eqtrd |
|- ( ( A e. ZZ /\ N e. NN /\ ( A ^c ( 1 / N ) ) e. QQ ) -> ( denom ` ( ( A ^c ( 1 / N ) ) ^ N ) ) = 1 ) |
| 21 |
|
simp3 |
|- ( ( A e. ZZ /\ N e. NN /\ ( A ^c ( 1 / N ) ) e. QQ ) -> ( A ^c ( 1 / N ) ) e. QQ ) |
| 22 |
6
|
nnnn0d |
|- ( ( A e. ZZ /\ N e. NN /\ ( A ^c ( 1 / N ) ) e. QQ ) -> N e. NN0 ) |
| 23 |
|
denexp |
|- ( ( ( A ^c ( 1 / N ) ) e. QQ /\ N e. NN0 ) -> ( denom ` ( ( A ^c ( 1 / N ) ) ^ N ) ) = ( ( denom ` ( A ^c ( 1 / N ) ) ) ^ N ) ) |
| 24 |
21 22 23
|
syl2anc |
|- ( ( A e. ZZ /\ N e. NN /\ ( A ^c ( 1 / N ) ) e. QQ ) -> ( denom ` ( ( A ^c ( 1 / N ) ) ^ N ) ) = ( ( denom ` ( A ^c ( 1 / N ) ) ) ^ N ) ) |
| 25 |
9 20 24
|
3eqtr2rd |
|- ( ( A e. ZZ /\ N e. NN /\ ( A ^c ( 1 / N ) ) e. QQ ) -> ( ( denom ` ( A ^c ( 1 / N ) ) ) ^ N ) = ( 1 ^ N ) ) |
| 26 |
3 5 6 25
|
exp11nnd |
|- ( ( A e. ZZ /\ N e. NN /\ ( A ^c ( 1 / N ) ) e. QQ ) -> ( denom ` ( A ^c ( 1 / N ) ) ) = 1 ) |
| 27 |
|
qden1elz |
|- ( ( A ^c ( 1 / N ) ) e. QQ -> ( ( denom ` ( A ^c ( 1 / N ) ) ) = 1 <-> ( A ^c ( 1 / N ) ) e. ZZ ) ) |
| 28 |
27
|
3ad2ant3 |
|- ( ( A e. ZZ /\ N e. NN /\ ( A ^c ( 1 / N ) ) e. QQ ) -> ( ( denom ` ( A ^c ( 1 / N ) ) ) = 1 <-> ( A ^c ( 1 / N ) ) e. ZZ ) ) |
| 29 |
26 28
|
mpbid |
|- ( ( A e. ZZ /\ N e. NN /\ ( A ^c ( 1 / N ) ) e. QQ ) -> ( A ^c ( 1 / N ) ) e. ZZ ) |