| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qdencl |
⊢ ( ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ∈ ℚ → ( denom ‘ ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ) ∈ ℕ ) |
| 2 |
1
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ∈ ℚ ) → ( denom ‘ ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ) ∈ ℕ ) |
| 3 |
2
|
nnrpd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ∈ ℚ ) → ( denom ‘ ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ) ∈ ℝ+ ) |
| 4 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 5 |
4
|
a1i |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ∈ ℚ ) → 1 ∈ ℝ+ ) |
| 6 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ∈ ℚ ) → 𝑁 ∈ ℕ ) |
| 7 |
6
|
nnzd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ∈ ℚ ) → 𝑁 ∈ ℤ ) |
| 8 |
|
1exp |
⊢ ( 𝑁 ∈ ℤ → ( 1 ↑ 𝑁 ) = 1 ) |
| 9 |
7 8
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ∈ ℚ ) → ( 1 ↑ 𝑁 ) = 1 ) |
| 10 |
|
zcn |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) |
| 11 |
10
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ∈ ℚ ) → 𝐴 ∈ ℂ ) |
| 12 |
|
cxproot |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ↑ 𝑁 ) = 𝐴 ) |
| 13 |
11 6 12
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ∈ ℚ ) → ( ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ↑ 𝑁 ) = 𝐴 ) |
| 14 |
13
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ∈ ℚ ) → ( denom ‘ ( ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ↑ 𝑁 ) ) = ( denom ‘ 𝐴 ) ) |
| 15 |
|
zq |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℚ ) |
| 16 |
|
qden1elz |
⊢ ( 𝐴 ∈ ℚ → ( ( denom ‘ 𝐴 ) = 1 ↔ 𝐴 ∈ ℤ ) ) |
| 17 |
15 16
|
syl |
⊢ ( 𝐴 ∈ ℤ → ( ( denom ‘ 𝐴 ) = 1 ↔ 𝐴 ∈ ℤ ) ) |
| 18 |
17
|
ibir |
⊢ ( 𝐴 ∈ ℤ → ( denom ‘ 𝐴 ) = 1 ) |
| 19 |
18
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ∈ ℚ ) → ( denom ‘ 𝐴 ) = 1 ) |
| 20 |
14 19
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ∈ ℚ ) → ( denom ‘ ( ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ↑ 𝑁 ) ) = 1 ) |
| 21 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ∈ ℚ ) → ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ∈ ℚ ) |
| 22 |
6
|
nnnn0d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ∈ ℚ ) → 𝑁 ∈ ℕ0 ) |
| 23 |
|
denexp |
⊢ ( ( ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( denom ‘ ( ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ↑ 𝑁 ) ) = ( ( denom ‘ ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ) ↑ 𝑁 ) ) |
| 24 |
21 22 23
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ∈ ℚ ) → ( denom ‘ ( ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ↑ 𝑁 ) ) = ( ( denom ‘ ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ) ↑ 𝑁 ) ) |
| 25 |
9 20 24
|
3eqtr2rd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ∈ ℚ ) → ( ( denom ‘ ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ) ↑ 𝑁 ) = ( 1 ↑ 𝑁 ) ) |
| 26 |
3 5 6 25
|
exp11nnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ∈ ℚ ) → ( denom ‘ ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ) = 1 ) |
| 27 |
|
qden1elz |
⊢ ( ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ∈ ℚ → ( ( denom ‘ ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ) = 1 ↔ ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ∈ ℤ ) ) |
| 28 |
27
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ∈ ℚ ) → ( ( denom ‘ ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ) = 1 ↔ ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ∈ ℤ ) ) |
| 29 |
26 28
|
mpbid |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ∈ ℚ ) → ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ∈ ℤ ) |