Metamath Proof Explorer


Theorem zrtelqelz

Description: zsqrtelqelz generalized to positive integer roots. (Contributed by Steven Nguyen, 6-Apr-2023)

Ref Expression
Assertion zrtelqelz ANA1NA1N

Proof

Step Hyp Ref Expression
1 qdencl A1NdenomA1N
2 1 3ad2ant3 ANA1NdenomA1N
3 2 nnrpd ANA1NdenomA1N+
4 1rp 1+
5 4 a1i ANA1N1+
6 simp2 ANA1NN
7 6 nnzd ANA1NN
8 1exp N1N=1
9 7 8 syl ANA1N1N=1
10 zcn AA
11 10 3ad2ant1 ANA1NA
12 cxproot ANA1NN=A
13 11 6 12 syl2anc ANA1NA1NN=A
14 13 fveq2d ANA1NdenomA1NN=denomA
15 zq AA
16 qden1elz AdenomA=1A
17 15 16 syl AdenomA=1A
18 17 ibir AdenomA=1
19 18 3ad2ant1 ANA1NdenomA=1
20 14 19 eqtrd ANA1NdenomA1NN=1
21 simp3 ANA1NA1N
22 6 nnnn0d ANA1NN0
23 denexp A1NN0denomA1NN=denomA1NN
24 21 22 23 syl2anc ANA1NdenomA1NN=denomA1NN
25 9 20 24 3eqtr2rd ANA1NdenomA1NN=1N
26 3 5 6 25 exp11nnd ANA1NdenomA1N=1
27 qden1elz A1NdenomA1N=1A1N
28 27 3ad2ant3 ANA1NdenomA1N=1A1N
29 26 28 mpbid ANA1NA1N