Metamath Proof Explorer


Theorem zrtelqelz

Description: zsqrtelqelz generalized to positive integer roots. (Contributed by Steven Nguyen, 6-Apr-2023)

Ref Expression
Assertion zrtelqelz A N A 1 N A 1 N

Proof

Step Hyp Ref Expression
1 qdencl A 1 N denom A 1 N
2 1 3ad2ant3 A N A 1 N denom A 1 N
3 2 nnrpd A N A 1 N denom A 1 N +
4 1rp 1 +
5 4 a1i A N A 1 N 1 +
6 simp2 A N A 1 N N
7 6 nnzd A N A 1 N N
8 1exp N 1 N = 1
9 7 8 syl A N A 1 N 1 N = 1
10 zcn A A
11 10 3ad2ant1 A N A 1 N A
12 cxproot A N A 1 N N = A
13 11 6 12 syl2anc A N A 1 N A 1 N N = A
14 13 fveq2d A N A 1 N denom A 1 N N = denom A
15 zq A A
16 qden1elz A denom A = 1 A
17 15 16 syl A denom A = 1 A
18 17 ibir A denom A = 1
19 18 3ad2ant1 A N A 1 N denom A = 1
20 14 19 eqtrd A N A 1 N denom A 1 N N = 1
21 simp3 A N A 1 N A 1 N
22 6 nnnn0d A N A 1 N N 0
23 denexp A 1 N N 0 denom A 1 N N = denom A 1 N N
24 21 22 23 syl2anc A N A 1 N denom A 1 N N = denom A 1 N N
25 9 20 24 3eqtr2rd A N A 1 N denom A 1 N N = 1 N
26 3 5 6 25 exp11nnd A N A 1 N denom A 1 N = 1
27 qden1elz A 1 N denom A 1 N = 1 A 1 N
28 27 3ad2ant3 A N A 1 N denom A 1 N = 1 A 1 N
29 26 28 mpbid A N A 1 N A 1 N