Description: zsqrtelqelz generalized to positive integer roots. (Contributed by Steven Nguyen, 6-Apr-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | zrtelqelz | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qdencl | |
|
2 | 1 | 3ad2ant3 | |
3 | 2 | nnrpd | |
4 | 1rp | |
|
5 | 4 | a1i | |
6 | simp2 | |
|
7 | 6 | nnzd | |
8 | 1exp | |
|
9 | 7 8 | syl | |
10 | zcn | |
|
11 | 10 | 3ad2ant1 | |
12 | cxproot | |
|
13 | 11 6 12 | syl2anc | |
14 | 13 | fveq2d | |
15 | zq | |
|
16 | qden1elz | |
|
17 | 15 16 | syl | |
18 | 17 | ibir | |
19 | 18 | 3ad2ant1 | |
20 | 14 19 | eqtrd | |
21 | simp3 | |
|
22 | 6 | nnnn0d | |
23 | denexp | |
|
24 | 21 22 23 | syl2anc | |
25 | 9 20 24 | 3eqtr2rd | |
26 | 3 5 6 25 | exp11nnd | |
27 | qden1elz | |
|
28 | 27 | 3ad2ant3 | |
29 | 26 28 | mpbid | |