Metamath Proof Explorer


Theorem cxproot

Description: The complex power function allows to write n-th roots via the idiom A ^c ( 1 / N ) . (Contributed by Mario Carneiro, 6-May-2015)

Ref Expression
Assertion cxproot ANA1NN=A

Proof

Step Hyp Ref Expression
1 nncn NN
2 1 adantl ANN
3 nnne0 NN0
4 3 adantl ANN0
5 2 4 recid2d AN1N N=1
6 5 oveq2d ANA1N N=A1
7 simpl ANA
8 nnrecre N1N
9 8 adantl AN1N
10 9 recnd AN1N
11 nnnn0 NN0
12 11 adantl ANN0
13 cxpmul2 A1NN0A1N N=A1NN
14 7 10 12 13 syl3anc ANA1N N=A1NN
15 cxp1 AA1=A
16 15 adantr ANA1=A
17 6 14 16 3eqtr3d ANA1NN=A