Metamath Proof Explorer


Theorem cxpmul2z

Description: Generalize cxpmul2 to negative integers. (Contributed by Mario Carneiro, 23-Apr-2015)

Ref Expression
Assertion cxpmul2z A A 0 B C A B C = A B C

Proof

Step Hyp Ref Expression
1 elznn0 C C C 0 C 0
2 cxpmul2 A B C 0 A B C = A B C
3 2 3expia A B C 0 A B C = A B C
4 3 ad4ant13 A A 0 B C C 0 A B C = A B C
5 simplll A A 0 B C C 0 A
6 simplr A A 0 B C C 0 B
7 simprr A A 0 B C C 0 C 0
8 cxpmul2 A B C 0 A B C = A B C
9 5 6 7 8 syl3anc A A 0 B C C 0 A B C = A B C
10 9 oveq2d A A 0 B C C 0 1 A B C = 1 A B C
11 simprl A A 0 B C C 0 C
12 11 recnd A A 0 B C C 0 C
13 6 12 mulneg2d A A 0 B C C 0 B C = B C
14 13 negeqd A A 0 B C C 0 B C = B C
15 6 12 mulcld A A 0 B C C 0 B C
16 15 negnegd A A 0 B C C 0 B C = B C
17 14 16 eqtrd A A 0 B C C 0 B C = B C
18 17 oveq2d A A 0 B C C 0 A B C = A B C
19 simpllr A A 0 B C C 0 A 0
20 12 negcld A A 0 B C C 0 C
21 6 20 mulcld A A 0 B C C 0 B C
22 cxpneg A A 0 B C A B C = 1 A B C
23 5 19 21 22 syl3anc A A 0 B C C 0 A B C = 1 A B C
24 18 23 eqtr3d A A 0 B C C 0 A B C = 1 A B C
25 cxpcl A B A B
26 25 ad4ant13 A A 0 B C C 0 A B
27 expneg2 A B C C 0 A B C = 1 A B C
28 26 12 7 27 syl3anc A A 0 B C C 0 A B C = 1 A B C
29 10 24 28 3eqtr4d A A 0 B C C 0 A B C = A B C
30 29 expr A A 0 B C C 0 A B C = A B C
31 4 30 jaod A A 0 B C C 0 C 0 A B C = A B C
32 31 expimpd A A 0 B C C 0 C 0 A B C = A B C
33 1 32 syl5bi A A 0 B C A B C = A B C
34 33 impr A A 0 B C A B C = A B C