| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elznn0 |
|
| 2 |
|
cxpmul2 |
|
| 3 |
2
|
3expia |
|
| 4 |
3
|
ad4ant13 |
|
| 5 |
|
simplll |
|
| 6 |
|
simplr |
|
| 7 |
|
simprr |
|
| 8 |
|
cxpmul2 |
|
| 9 |
5 6 7 8
|
syl3anc |
|
| 10 |
9
|
oveq2d |
|
| 11 |
|
simprl |
|
| 12 |
11
|
recnd |
|
| 13 |
6 12
|
mulneg2d |
|
| 14 |
13
|
negeqd |
|
| 15 |
6 12
|
mulcld |
|
| 16 |
15
|
negnegd |
|
| 17 |
14 16
|
eqtrd |
|
| 18 |
17
|
oveq2d |
|
| 19 |
|
simpllr |
|
| 20 |
12
|
negcld |
|
| 21 |
6 20
|
mulcld |
|
| 22 |
|
cxpneg |
|
| 23 |
5 19 21 22
|
syl3anc |
|
| 24 |
18 23
|
eqtr3d |
|
| 25 |
|
cxpcl |
|
| 26 |
25
|
ad4ant13 |
|
| 27 |
|
expneg2 |
|
| 28 |
26 12 7 27
|
syl3anc |
|
| 29 |
10 24 28
|
3eqtr4d |
|
| 30 |
29
|
expr |
|
| 31 |
4 30
|
jaod |
|
| 32 |
31
|
expimpd |
|
| 33 |
1 32
|
biimtrid |
|
| 34 |
33
|
impr |
|