Metamath Proof Explorer


Theorem cxpneg

Description: Value of a complex number raised to a negative power. (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion cxpneg A A 0 B A B = 1 A B

Proof

Step Hyp Ref Expression
1 simp1 A A 0 B A
2 simp3 A A 0 B B
3 cxpcl A B A B
4 1 2 3 syl2anc A A 0 B A B
5 2 negcld A A 0 B B
6 cxpcl A B A B
7 1 5 6 syl2anc A A 0 B A B
8 cxpne0 A A 0 B A B 0
9 2 negidd A A 0 B B + B = 0
10 9 oveq2d A A 0 B A B + B = A 0
11 simp2 A A 0 B A 0
12 cxpadd A A 0 B B A B + B = A B A B
13 1 11 2 5 12 syl211anc A A 0 B A B + B = A B A B
14 cxp0 A A 0 = 1
15 1 14 syl A A 0 B A 0 = 1
16 10 13 15 3eqtr3d A A 0 B A B A B = 1
17 4 7 8 16 mvllmuld A A 0 B A B = 1 A B