Metamath Proof Explorer


Theorem cxpneg

Description: Value of a complex number raised to a negative power. (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion cxpneg AA0BAB=1AB

Proof

Step Hyp Ref Expression
1 simp1 AA0BA
2 simp3 AA0BB
3 cxpcl ABAB
4 1 2 3 syl2anc AA0BAB
5 2 negcld AA0BB
6 cxpcl ABAB
7 1 5 6 syl2anc AA0BAB
8 cxpne0 AA0BAB0
9 2 negidd AA0BB+B=0
10 9 oveq2d AA0BAB+B=A0
11 simp2 AA0BA0
12 cxpadd AA0BBAB+B=ABAB
13 1 11 2 5 12 syl211anc AA0BAB+B=ABAB
14 cxp0 AA0=1
15 1 14 syl AA0BA0=1
16 10 13 15 3eqtr3d AA0BABAB=1
17 4 7 8 16 mvllmuld AA0BAB=1AB