Metamath Proof Explorer


Theorem cxpcl

Description: Closure of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion cxpcl ABAB

Proof

Step Hyp Ref Expression
1 cxpval ABAB=ifA=0ifB=010eBlogA
2 ax-1cn 1
3 0cn 0
4 2 3 ifcli ifB=010
5 4 a1i ABA=0ifB=010
6 df-ne A0¬A=0
7 id BB
8 logcl AA0logA
9 mulcl BlogABlogA
10 7 8 9 syl2anr AA0BBlogA
11 10 an32s ABA0BlogA
12 efcl BlogAeBlogA
13 11 12 syl ABA0eBlogA
14 6 13 sylan2br AB¬A=0eBlogA
15 5 14 ifclda ABifA=0ifB=010eBlogA
16 1 15 eqeltrd ABAB