Metamath Proof Explorer


Theorem cxpval

Description: Value of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion cxpval ABAB=ifA=0ifB=010eBlogA

Proof

Step Hyp Ref Expression
1 simpl x=Ay=Bx=A
2 1 eqeq1d x=Ay=Bx=0A=0
3 simpr x=Ay=By=B
4 3 eqeq1d x=Ay=By=0B=0
5 4 ifbid x=Ay=Bify=010=ifB=010
6 1 fveq2d x=Ay=Blogx=logA
7 3 6 oveq12d x=Ay=Bylogx=BlogA
8 7 fveq2d x=Ay=Beylogx=eBlogA
9 2 5 8 ifbieq12d x=Ay=Bifx=0ify=010eylogx=ifA=0ifB=010eBlogA
10 df-cxp c=x,yifx=0ify=010eylogx
11 ax-1cn 1
12 0cn 0
13 11 12 ifcli ifB=010
14 13 elexi ifB=010V
15 fvex eBlogAV
16 14 15 ifex ifA=0ifB=010eBlogAV
17 9 10 16 ovmpoa ABAB=ifA=0ifB=010eBlogA