Metamath Proof Explorer


Theorem cxpadd

Description: Sum of exponents law for complex exponentiation. Proposition 10-4.2(a) of Gleason p. 135. (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion cxpadd A A 0 B C A B + C = A B A C

Proof

Step Hyp Ref Expression
1 simp2 A A 0 B C B
2 simp3 A A 0 B C C
3 logcl A A 0 log A
4 3 3ad2ant1 A A 0 B C log A
5 1 2 4 adddird A A 0 B C B + C log A = B log A + C log A
6 5 fveq2d A A 0 B C e B + C log A = e B log A + C log A
7 1 4 mulcld A A 0 B C B log A
8 2 4 mulcld A A 0 B C C log A
9 efadd B log A C log A e B log A + C log A = e B log A e C log A
10 7 8 9 syl2anc A A 0 B C e B log A + C log A = e B log A e C log A
11 6 10 eqtrd A A 0 B C e B + C log A = e B log A e C log A
12 simp1l A A 0 B C A
13 simp1r A A 0 B C A 0
14 addcl B C B + C
15 14 3adant1 A A 0 B C B + C
16 cxpef A A 0 B + C A B + C = e B + C log A
17 12 13 15 16 syl3anc A A 0 B C A B + C = e B + C log A
18 cxpef A A 0 B A B = e B log A
19 12 13 1 18 syl3anc A A 0 B C A B = e B log A
20 cxpef A A 0 C A C = e C log A
21 12 13 2 20 syl3anc A A 0 B C A C = e C log A
22 19 21 oveq12d A A 0 B C A B A C = e B log A e C log A
23 11 17 22 3eqtr4d A A 0 B C A B + C = A B A C