| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp2 |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> B e. CC ) |
| 2 |
|
simp3 |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> C e. CC ) |
| 3 |
|
logcl |
|- ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. CC ) |
| 4 |
3
|
3ad2ant1 |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( log ` A ) e. CC ) |
| 5 |
1 2 4
|
adddird |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( ( B + C ) x. ( log ` A ) ) = ( ( B x. ( log ` A ) ) + ( C x. ( log ` A ) ) ) ) |
| 6 |
5
|
fveq2d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( exp ` ( ( B + C ) x. ( log ` A ) ) ) = ( exp ` ( ( B x. ( log ` A ) ) + ( C x. ( log ` A ) ) ) ) ) |
| 7 |
1 4
|
mulcld |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( B x. ( log ` A ) ) e. CC ) |
| 8 |
2 4
|
mulcld |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( C x. ( log ` A ) ) e. CC ) |
| 9 |
|
efadd |
|- ( ( ( B x. ( log ` A ) ) e. CC /\ ( C x. ( log ` A ) ) e. CC ) -> ( exp ` ( ( B x. ( log ` A ) ) + ( C x. ( log ` A ) ) ) ) = ( ( exp ` ( B x. ( log ` A ) ) ) x. ( exp ` ( C x. ( log ` A ) ) ) ) ) |
| 10 |
7 8 9
|
syl2anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( exp ` ( ( B x. ( log ` A ) ) + ( C x. ( log ` A ) ) ) ) = ( ( exp ` ( B x. ( log ` A ) ) ) x. ( exp ` ( C x. ( log ` A ) ) ) ) ) |
| 11 |
6 10
|
eqtrd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( exp ` ( ( B + C ) x. ( log ` A ) ) ) = ( ( exp ` ( B x. ( log ` A ) ) ) x. ( exp ` ( C x. ( log ` A ) ) ) ) ) |
| 12 |
|
simp1l |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> A e. CC ) |
| 13 |
|
simp1r |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> A =/= 0 ) |
| 14 |
|
addcl |
|- ( ( B e. CC /\ C e. CC ) -> ( B + C ) e. CC ) |
| 15 |
14
|
3adant1 |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( B + C ) e. CC ) |
| 16 |
|
cxpef |
|- ( ( A e. CC /\ A =/= 0 /\ ( B + C ) e. CC ) -> ( A ^c ( B + C ) ) = ( exp ` ( ( B + C ) x. ( log ` A ) ) ) ) |
| 17 |
12 13 15 16
|
syl3anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( A ^c ( B + C ) ) = ( exp ` ( ( B + C ) x. ( log ` A ) ) ) ) |
| 18 |
|
cxpef |
|- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) ) |
| 19 |
12 13 1 18
|
syl3anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) ) |
| 20 |
|
cxpef |
|- ( ( A e. CC /\ A =/= 0 /\ C e. CC ) -> ( A ^c C ) = ( exp ` ( C x. ( log ` A ) ) ) ) |
| 21 |
12 13 2 20
|
syl3anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( A ^c C ) = ( exp ` ( C x. ( log ` A ) ) ) ) |
| 22 |
19 21
|
oveq12d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( ( A ^c B ) x. ( A ^c C ) ) = ( ( exp ` ( B x. ( log ` A ) ) ) x. ( exp ` ( C x. ( log ` A ) ) ) ) ) |
| 23 |
11 17 22
|
3eqtr4d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( A ^c ( B + C ) ) = ( ( A ^c B ) x. ( A ^c C ) ) ) |