Metamath Proof Explorer


Theorem abscxp

Description: Absolute value of a power, when the base is real. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Assertion abscxp A + B A B = A B

Proof

Step Hyp Ref Expression
1 simpr A + B B
2 relogcl A + log A
3 2 recnd A + log A
4 3 adantr A + B log A
5 1 4 mulcld A + B B log A
6 absef B log A e B log A = e B log A
7 5 6 syl A + B e B log A = e B log A
8 remul2 log A B log A B = log A B
9 2 8 sylan A + B log A B = log A B
10 1 4 mulcomd A + B B log A = log A B
11 10 fveq2d A + B B log A = log A B
12 recl B B
13 12 adantl A + B B
14 13 recnd A + B B
15 14 4 mulcomd A + B B log A = log A B
16 9 11 15 3eqtr4d A + B B log A = B log A
17 16 fveq2d A + B e B log A = e B log A
18 7 17 eqtrd A + B e B log A = e B log A
19 rpcn A + A
20 19 adantr A + B A
21 rpne0 A + A 0
22 21 adantr A + B A 0
23 cxpef A A 0 B A B = e B log A
24 20 22 1 23 syl3anc A + B A B = e B log A
25 24 fveq2d A + B A B = e B log A
26 cxpef A A 0 B A B = e B log A
27 20 22 14 26 syl3anc A + B A B = e B log A
28 18 25 27 3eqtr4d A + B A B = A B