Metamath Proof Explorer


Theorem abscxp

Description: Absolute value of a power, when the base is real. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Assertion abscxp A+BAB=AB

Proof

Step Hyp Ref Expression
1 simpr A+BB
2 relogcl A+logA
3 2 recnd A+logA
4 3 adantr A+BlogA
5 1 4 mulcld A+BBlogA
6 absef BlogAeBlogA=eBlogA
7 5 6 syl A+BeBlogA=eBlogA
8 remul2 logABlogAB=logAB
9 2 8 sylan A+BlogAB=logAB
10 1 4 mulcomd A+BBlogA=logAB
11 10 fveq2d A+BBlogA=logAB
12 recl BB
13 12 adantl A+BB
14 13 recnd A+BB
15 14 4 mulcomd A+BBlogA=logAB
16 9 11 15 3eqtr4d A+BBlogA=BlogA
17 16 fveq2d A+BeBlogA=eBlogA
18 7 17 eqtrd A+BeBlogA=eBlogA
19 rpcn A+A
20 19 adantr A+BA
21 rpne0 A+A0
22 21 adantr A+BA0
23 cxpef AA0BAB=eBlogA
24 20 22 1 23 syl3anc A+BAB=eBlogA
25 24 fveq2d A+BAB=eBlogA
26 cxpef AA0BAB=eBlogA
27 20 22 14 26 syl3anc A+BAB=eBlogA
28 18 25 27 3eqtr4d A+BAB=AB