| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → 𝐵 ∈ ℂ ) |
| 2 |
|
relogcl |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ ) |
| 3 |
2
|
recnd |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 4 |
3
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 5 |
1 4
|
mulcld |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ℂ ) |
| 6 |
|
absef |
⊢ ( ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ℂ → ( abs ‘ ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) = ( exp ‘ ( ℜ ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) ) |
| 7 |
5 6
|
syl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) = ( exp ‘ ( ℜ ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) ) |
| 8 |
|
remul2 |
⊢ ( ( ( log ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( ( log ‘ 𝐴 ) · 𝐵 ) ) = ( ( log ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) |
| 9 |
2 8
|
sylan |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( ( log ‘ 𝐴 ) · 𝐵 ) ) = ( ( log ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) |
| 10 |
1 4
|
mulcomd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 · ( log ‘ 𝐴 ) ) = ( ( log ‘ 𝐴 ) · 𝐵 ) ) |
| 11 |
10
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) = ( ℜ ‘ ( ( log ‘ 𝐴 ) · 𝐵 ) ) ) |
| 12 |
|
recl |
⊢ ( 𝐵 ∈ ℂ → ( ℜ ‘ 𝐵 ) ∈ ℝ ) |
| 13 |
12
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ 𝐵 ) ∈ ℝ ) |
| 14 |
13
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ 𝐵 ) ∈ ℂ ) |
| 15 |
14 4
|
mulcomd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( ( ℜ ‘ 𝐵 ) · ( log ‘ 𝐴 ) ) = ( ( log ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) |
| 16 |
9 11 15
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) = ( ( ℜ ‘ 𝐵 ) · ( log ‘ 𝐴 ) ) ) |
| 17 |
16
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( exp ‘ ( ℜ ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) = ( exp ‘ ( ( ℜ ‘ 𝐵 ) · ( log ‘ 𝐴 ) ) ) ) |
| 18 |
7 17
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) = ( exp ‘ ( ( ℜ ‘ 𝐵 ) · ( log ‘ 𝐴 ) ) ) ) |
| 19 |
|
rpcn |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
| 21 |
|
rpne0 |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ≠ 0 ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → 𝐴 ≠ 0 ) |
| 23 |
|
cxpef |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) = ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) |
| 24 |
20 22 1 23
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) = ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) |
| 25 |
24
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ ( 𝐴 ↑𝑐 𝐵 ) ) = ( abs ‘ ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) ) |
| 26 |
|
cxpef |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ ( ℜ ‘ 𝐵 ) ∈ ℂ ) → ( 𝐴 ↑𝑐 ( ℜ ‘ 𝐵 ) ) = ( exp ‘ ( ( ℜ ‘ 𝐵 ) · ( log ‘ 𝐴 ) ) ) ) |
| 27 |
20 22 14 26
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( ℜ ‘ 𝐵 ) ) = ( exp ‘ ( ( ℜ ‘ 𝐵 ) · ( log ‘ 𝐴 ) ) ) ) |
| 28 |
18 25 27
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ ( 𝐴 ↑𝑐 𝐵 ) ) = ( 𝐴 ↑𝑐 ( ℜ ‘ 𝐵 ) ) ) |