| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cxpval | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐴 ↑𝑐 𝐵 )  =  if ( 𝐴  =  0 ,  if ( 𝐵  =  0 ,  1 ,  0 ) ,  ( exp ‘ ( 𝐵  ·  ( log ‘ 𝐴 ) ) ) ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							3adant2 | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐵  ∈  ℂ )  →  ( 𝐴 ↑𝑐 𝐵 )  =  if ( 𝐴  =  0 ,  if ( 𝐵  =  0 ,  1 ,  0 ) ,  ( exp ‘ ( 𝐵  ·  ( log ‘ 𝐴 ) ) ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐵  ∈  ℂ )  →  𝐴  ≠  0 )  | 
						
						
							| 4 | 
							
								3
							 | 
							neneqd | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐵  ∈  ℂ )  →  ¬  𝐴  =  0 )  | 
						
						
							| 5 | 
							
								4
							 | 
							iffalsed | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐵  ∈  ℂ )  →  if ( 𝐴  =  0 ,  if ( 𝐵  =  0 ,  1 ,  0 ) ,  ( exp ‘ ( 𝐵  ·  ( log ‘ 𝐴 ) ) ) )  =  ( exp ‘ ( 𝐵  ·  ( log ‘ 𝐴 ) ) ) )  | 
						
						
							| 6 | 
							
								2 5
							 | 
							eqtrd | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐵  ∈  ℂ )  →  ( 𝐴 ↑𝑐 𝐵 )  =  ( exp ‘ ( 𝐵  ·  ( log ‘ 𝐴 ) ) ) )  |