Metamath Proof Explorer


Theorem exp11nnd

Description: sq11d for positive real bases and positive integer exponents. The base cannot be generalized much further, since if N is even then we have A ^ N = -u A ^ N . (Contributed by SN, 14-Sep-2023)

Ref Expression
Hypotheses exp11nnd.1 φA+
exp11nnd.2 φB+
exp11nnd.3 φN
exp11nnd.4 φAN=BN
Assertion exp11nnd φA=B

Proof

Step Hyp Ref Expression
1 exp11nnd.1 φA+
2 exp11nnd.2 φB+
3 exp11nnd.3 φN
4 exp11nnd.4 φAN=BN
5 1 rpred φA
6 3 nnnn0d φN0
7 5 6 reexpcld φAN
8 2 rpred φB
9 8 6 reexpcld φBN
10 7 9 lttri3d φAN=BN¬AN<BN¬BN<AN
11 4 10 mpbid φ¬AN<BN¬BN<AN
12 1 2 3 ltexp1d φA<BAN<BN
13 12 notbid φ¬A<B¬AN<BN
14 2 1 3 ltexp1d φB<ABN<AN
15 14 notbid φ¬B<A¬BN<AN
16 13 15 anbi12d φ¬A<B¬B<A¬AN<BN¬BN<AN
17 11 16 mpbird φ¬A<B¬B<A
18 5 8 lttri3d φA=B¬A<B¬B<A
19 17 18 mpbird φA=B