Metamath Proof Explorer


Theorem sq11d

Description: The square function is one-to-one for nonnegative reals. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses sqgt0d.1 φA
lt2sqd.2 φB
lt2sqd.3 φ0A
lt2sqd.4 φ0B
sq11d.5 φA2=B2
Assertion sq11d φA=B

Proof

Step Hyp Ref Expression
1 sqgt0d.1 φA
2 lt2sqd.2 φB
3 lt2sqd.3 φ0A
4 lt2sqd.4 φ0B
5 sq11d.5 φA2=B2
6 sq11 A0AB0BA2=B2A=B
7 1 3 2 4 6 syl22anc φA2=B2A=B
8 5 7 mpbid φA=B