Metamath Proof Explorer


Theorem exp11d

Description: exp11nnd for nonzero integer exponents. (Contributed by SN, 14-Sep-2023)

Ref Expression
Hypotheses exp11d.1 φ A +
exp11d.2 φ B +
exp11d.3 φ N
exp11d.4 φ N 0
exp11d.5 φ A N = B N
Assertion exp11d φ A = B

Proof

Step Hyp Ref Expression
1 exp11d.1 φ A +
2 exp11d.2 φ B +
3 exp11d.3 φ N
4 exp11d.4 φ N 0
5 exp11d.5 φ A N = B N
6 simpr φ N = 0 N = 0
7 4 adantr φ N = 0 N 0
8 6 7 pm2.21ddne φ N = 0 A = B
9 1 adantr φ N A +
10 2 adantr φ N B +
11 simpr φ N N
12 5 adantr φ N A N = B N
13 9 10 11 12 exp11nnd φ N A = B
14 1 adantr φ N A +
15 2 adantr φ N B +
16 simpr φ N N
17 14 rpcnd φ N A
18 16 nnnn0d φ N N 0
19 17 18 expcld φ N A N
20 15 rpcnd φ N B
21 20 18 expcld φ N B N
22 14 rpne0d φ N A 0
23 16 nnzd φ N N
24 17 22 23 expne0d φ N A N 0
25 15 rpne0d φ N B 0
26 20 25 23 expne0d φ N B N 0
27 5 adantr φ N A N = B N
28 3 zcnd φ N
29 28 adantr φ N N
30 expneg2 A N N 0 A N = 1 A N
31 17 29 18 30 syl3anc φ N A N = 1 A N
32 expneg2 B N N 0 B N = 1 B N
33 20 29 18 32 syl3anc φ N B N = 1 B N
34 27 31 33 3eqtr3d φ N 1 A N = 1 B N
35 19 21 24 26 34 rec11d φ N A N = B N
36 14 15 16 35 exp11nnd φ N A = B
37 elz N N N = 0 N N
38 3 37 sylib φ N N = 0 N N
39 38 simprd φ N = 0 N N
40 8 13 36 39 mpjao3dan φ A = B