| Step |
Hyp |
Ref |
Expression |
| 1 |
|
exp11d.1 |
|- ( ph -> A e. RR+ ) |
| 2 |
|
exp11d.2 |
|- ( ph -> B e. RR+ ) |
| 3 |
|
exp11d.3 |
|- ( ph -> N e. ZZ ) |
| 4 |
|
exp11d.4 |
|- ( ph -> N =/= 0 ) |
| 5 |
|
exp11d.5 |
|- ( ph -> ( A ^ N ) = ( B ^ N ) ) |
| 6 |
|
simpr |
|- ( ( ph /\ N = 0 ) -> N = 0 ) |
| 7 |
4
|
adantr |
|- ( ( ph /\ N = 0 ) -> N =/= 0 ) |
| 8 |
6 7
|
pm2.21ddne |
|- ( ( ph /\ N = 0 ) -> A = B ) |
| 9 |
1
|
adantr |
|- ( ( ph /\ N e. NN ) -> A e. RR+ ) |
| 10 |
2
|
adantr |
|- ( ( ph /\ N e. NN ) -> B e. RR+ ) |
| 11 |
|
simpr |
|- ( ( ph /\ N e. NN ) -> N e. NN ) |
| 12 |
5
|
adantr |
|- ( ( ph /\ N e. NN ) -> ( A ^ N ) = ( B ^ N ) ) |
| 13 |
9 10 11 12
|
exp11nnd |
|- ( ( ph /\ N e. NN ) -> A = B ) |
| 14 |
1
|
adantr |
|- ( ( ph /\ -u N e. NN ) -> A e. RR+ ) |
| 15 |
2
|
adantr |
|- ( ( ph /\ -u N e. NN ) -> B e. RR+ ) |
| 16 |
|
simpr |
|- ( ( ph /\ -u N e. NN ) -> -u N e. NN ) |
| 17 |
14
|
rpcnd |
|- ( ( ph /\ -u N e. NN ) -> A e. CC ) |
| 18 |
16
|
nnnn0d |
|- ( ( ph /\ -u N e. NN ) -> -u N e. NN0 ) |
| 19 |
17 18
|
expcld |
|- ( ( ph /\ -u N e. NN ) -> ( A ^ -u N ) e. CC ) |
| 20 |
15
|
rpcnd |
|- ( ( ph /\ -u N e. NN ) -> B e. CC ) |
| 21 |
20 18
|
expcld |
|- ( ( ph /\ -u N e. NN ) -> ( B ^ -u N ) e. CC ) |
| 22 |
14
|
rpne0d |
|- ( ( ph /\ -u N e. NN ) -> A =/= 0 ) |
| 23 |
16
|
nnzd |
|- ( ( ph /\ -u N e. NN ) -> -u N e. ZZ ) |
| 24 |
17 22 23
|
expne0d |
|- ( ( ph /\ -u N e. NN ) -> ( A ^ -u N ) =/= 0 ) |
| 25 |
15
|
rpne0d |
|- ( ( ph /\ -u N e. NN ) -> B =/= 0 ) |
| 26 |
20 25 23
|
expne0d |
|- ( ( ph /\ -u N e. NN ) -> ( B ^ -u N ) =/= 0 ) |
| 27 |
5
|
adantr |
|- ( ( ph /\ -u N e. NN ) -> ( A ^ N ) = ( B ^ N ) ) |
| 28 |
3
|
zcnd |
|- ( ph -> N e. CC ) |
| 29 |
28
|
adantr |
|- ( ( ph /\ -u N e. NN ) -> N e. CC ) |
| 30 |
|
expneg2 |
|- ( ( A e. CC /\ N e. CC /\ -u N e. NN0 ) -> ( A ^ N ) = ( 1 / ( A ^ -u N ) ) ) |
| 31 |
17 29 18 30
|
syl3anc |
|- ( ( ph /\ -u N e. NN ) -> ( A ^ N ) = ( 1 / ( A ^ -u N ) ) ) |
| 32 |
|
expneg2 |
|- ( ( B e. CC /\ N e. CC /\ -u N e. NN0 ) -> ( B ^ N ) = ( 1 / ( B ^ -u N ) ) ) |
| 33 |
20 29 18 32
|
syl3anc |
|- ( ( ph /\ -u N e. NN ) -> ( B ^ N ) = ( 1 / ( B ^ -u N ) ) ) |
| 34 |
27 31 33
|
3eqtr3d |
|- ( ( ph /\ -u N e. NN ) -> ( 1 / ( A ^ -u N ) ) = ( 1 / ( B ^ -u N ) ) ) |
| 35 |
19 21 24 26 34
|
rec11d |
|- ( ( ph /\ -u N e. NN ) -> ( A ^ -u N ) = ( B ^ -u N ) ) |
| 36 |
14 15 16 35
|
exp11nnd |
|- ( ( ph /\ -u N e. NN ) -> A = B ) |
| 37 |
|
elz |
|- ( N e. ZZ <-> ( N e. RR /\ ( N = 0 \/ N e. NN \/ -u N e. NN ) ) ) |
| 38 |
3 37
|
sylib |
|- ( ph -> ( N e. RR /\ ( N = 0 \/ N e. NN \/ -u N e. NN ) ) ) |
| 39 |
38
|
simprd |
|- ( ph -> ( N = 0 \/ N e. NN \/ -u N e. NN ) ) |
| 40 |
8 13 36 39
|
mpjao3dan |
|- ( ph -> A = B ) |