| Step |
Hyp |
Ref |
Expression |
| 1 |
|
exp11d.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
| 2 |
|
exp11d.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
| 3 |
|
exp11d.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 4 |
|
exp11d.4 |
⊢ ( 𝜑 → 𝑁 ≠ 0 ) |
| 5 |
|
exp11d.5 |
⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) = ( 𝐵 ↑ 𝑁 ) ) |
| 6 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → 𝑁 = 0 ) |
| 7 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → 𝑁 ≠ 0 ) |
| 8 |
6 7
|
pm2.21ddne |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → 𝐴 = 𝐵 ) |
| 9 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → 𝐴 ∈ ℝ+ ) |
| 10 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → 𝐵 ∈ ℝ+ ) |
| 11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ ) |
| 12 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ↑ 𝑁 ) = ( 𝐵 ↑ 𝑁 ) ) |
| 13 |
9 10 11 12
|
exp11nnd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → 𝐴 = 𝐵 ) |
| 14 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ - 𝑁 ∈ ℕ ) → 𝐴 ∈ ℝ+ ) |
| 15 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ - 𝑁 ∈ ℕ ) → 𝐵 ∈ ℝ+ ) |
| 16 |
|
simpr |
⊢ ( ( 𝜑 ∧ - 𝑁 ∈ ℕ ) → - 𝑁 ∈ ℕ ) |
| 17 |
14
|
rpcnd |
⊢ ( ( 𝜑 ∧ - 𝑁 ∈ ℕ ) → 𝐴 ∈ ℂ ) |
| 18 |
16
|
nnnn0d |
⊢ ( ( 𝜑 ∧ - 𝑁 ∈ ℕ ) → - 𝑁 ∈ ℕ0 ) |
| 19 |
17 18
|
expcld |
⊢ ( ( 𝜑 ∧ - 𝑁 ∈ ℕ ) → ( 𝐴 ↑ - 𝑁 ) ∈ ℂ ) |
| 20 |
15
|
rpcnd |
⊢ ( ( 𝜑 ∧ - 𝑁 ∈ ℕ ) → 𝐵 ∈ ℂ ) |
| 21 |
20 18
|
expcld |
⊢ ( ( 𝜑 ∧ - 𝑁 ∈ ℕ ) → ( 𝐵 ↑ - 𝑁 ) ∈ ℂ ) |
| 22 |
14
|
rpne0d |
⊢ ( ( 𝜑 ∧ - 𝑁 ∈ ℕ ) → 𝐴 ≠ 0 ) |
| 23 |
16
|
nnzd |
⊢ ( ( 𝜑 ∧ - 𝑁 ∈ ℕ ) → - 𝑁 ∈ ℤ ) |
| 24 |
17 22 23
|
expne0d |
⊢ ( ( 𝜑 ∧ - 𝑁 ∈ ℕ ) → ( 𝐴 ↑ - 𝑁 ) ≠ 0 ) |
| 25 |
15
|
rpne0d |
⊢ ( ( 𝜑 ∧ - 𝑁 ∈ ℕ ) → 𝐵 ≠ 0 ) |
| 26 |
20 25 23
|
expne0d |
⊢ ( ( 𝜑 ∧ - 𝑁 ∈ ℕ ) → ( 𝐵 ↑ - 𝑁 ) ≠ 0 ) |
| 27 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ - 𝑁 ∈ ℕ ) → ( 𝐴 ↑ 𝑁 ) = ( 𝐵 ↑ 𝑁 ) ) |
| 28 |
3
|
zcnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ - 𝑁 ∈ ℕ ) → 𝑁 ∈ ℂ ) |
| 30 |
|
expneg2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ - 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) = ( 1 / ( 𝐴 ↑ - 𝑁 ) ) ) |
| 31 |
17 29 18 30
|
syl3anc |
⊢ ( ( 𝜑 ∧ - 𝑁 ∈ ℕ ) → ( 𝐴 ↑ 𝑁 ) = ( 1 / ( 𝐴 ↑ - 𝑁 ) ) ) |
| 32 |
|
expneg2 |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ - 𝑁 ∈ ℕ0 ) → ( 𝐵 ↑ 𝑁 ) = ( 1 / ( 𝐵 ↑ - 𝑁 ) ) ) |
| 33 |
20 29 18 32
|
syl3anc |
⊢ ( ( 𝜑 ∧ - 𝑁 ∈ ℕ ) → ( 𝐵 ↑ 𝑁 ) = ( 1 / ( 𝐵 ↑ - 𝑁 ) ) ) |
| 34 |
27 31 33
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ - 𝑁 ∈ ℕ ) → ( 1 / ( 𝐴 ↑ - 𝑁 ) ) = ( 1 / ( 𝐵 ↑ - 𝑁 ) ) ) |
| 35 |
19 21 24 26 34
|
rec11d |
⊢ ( ( 𝜑 ∧ - 𝑁 ∈ ℕ ) → ( 𝐴 ↑ - 𝑁 ) = ( 𝐵 ↑ - 𝑁 ) ) |
| 36 |
14 15 16 35
|
exp11nnd |
⊢ ( ( 𝜑 ∧ - 𝑁 ∈ ℕ ) → 𝐴 = 𝐵 ) |
| 37 |
|
elz |
⊢ ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℝ ∧ ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ) ) |
| 38 |
3 37
|
sylib |
⊢ ( 𝜑 → ( 𝑁 ∈ ℝ ∧ ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ) ) |
| 39 |
38
|
simprd |
⊢ ( 𝜑 → ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ) |
| 40 |
8 13 36 39
|
mpjao3dan |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |