Metamath Proof Explorer


Theorem 0dvds0

Description: 0 divides 0. (Contributed by SN, 15-Sep-2024)

Ref Expression
Assertion 0dvds0 0 ∥ 0

Proof

Step Hyp Ref Expression
1 0z 0 ∈ ℤ
2 dvds0 ( 0 ∈ ℤ → 0 ∥ 0 )
3 1 2 ax-mp 0 ∥ 0