Metamath Proof Explorer


Theorem zrtdvds

Description: A positive integer root divides its integer. (Contributed by Steven Nguyen, 6-Apr-2023)

Ref Expression
Assertion zrtdvds
|- ( ( A e. ZZ /\ N e. NN /\ ( A ^c ( 1 / N ) ) e. NN ) -> ( A ^c ( 1 / N ) ) || A )

Proof

Step Hyp Ref Expression
1 nnz
 |-  ( ( A ^c ( 1 / N ) ) e. NN -> ( A ^c ( 1 / N ) ) e. ZZ )
2 1 3ad2ant3
 |-  ( ( A e. ZZ /\ N e. NN /\ ( A ^c ( 1 / N ) ) e. NN ) -> ( A ^c ( 1 / N ) ) e. ZZ )
3 simp2
 |-  ( ( A e. ZZ /\ N e. NN /\ ( A ^c ( 1 / N ) ) e. NN ) -> N e. NN )
4 iddvdsexp
 |-  ( ( ( A ^c ( 1 / N ) ) e. ZZ /\ N e. NN ) -> ( A ^c ( 1 / N ) ) || ( ( A ^c ( 1 / N ) ) ^ N ) )
5 2 3 4 syl2anc
 |-  ( ( A e. ZZ /\ N e. NN /\ ( A ^c ( 1 / N ) ) e. NN ) -> ( A ^c ( 1 / N ) ) || ( ( A ^c ( 1 / N ) ) ^ N ) )
6 zcn
 |-  ( A e. ZZ -> A e. CC )
7 6 3ad2ant1
 |-  ( ( A e. ZZ /\ N e. NN /\ ( A ^c ( 1 / N ) ) e. NN ) -> A e. CC )
8 cxproot
 |-  ( ( A e. CC /\ N e. NN ) -> ( ( A ^c ( 1 / N ) ) ^ N ) = A )
9 7 3 8 syl2anc
 |-  ( ( A e. ZZ /\ N e. NN /\ ( A ^c ( 1 / N ) ) e. NN ) -> ( ( A ^c ( 1 / N ) ) ^ N ) = A )
10 5 9 breqtrd
 |-  ( ( A e. ZZ /\ N e. NN /\ ( A ^c ( 1 / N ) ) e. NN ) -> ( A ^c ( 1 / N ) ) || A )