| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 2 |
1
|
adantr |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> P e. NN ) |
| 3 |
2
|
nnred |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> P e. RR ) |
| 4 |
|
0red |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> 0 e. RR ) |
| 5 |
2
|
nngt0d |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> 0 < P ) |
| 6 |
4 3 5
|
ltled |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> 0 <_ P ) |
| 7 |
|
eluzelre |
|- ( N e. ( ZZ>= ` 2 ) -> N e. RR ) |
| 8 |
7
|
adantl |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> N e. RR ) |
| 9 |
|
eluz2n0 |
|- ( N e. ( ZZ>= ` 2 ) -> N =/= 0 ) |
| 10 |
9
|
adantl |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> N =/= 0 ) |
| 11 |
8 10
|
rereccld |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( 1 / N ) e. RR ) |
| 12 |
3 6 11
|
recxpcld |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( P ^c ( 1 / N ) ) e. RR ) |
| 13 |
|
eluz2gt1 |
|- ( N e. ( ZZ>= ` 2 ) -> 1 < N ) |
| 14 |
|
recgt1i |
|- ( ( N e. RR /\ 1 < N ) -> ( 0 < ( 1 / N ) /\ ( 1 / N ) < 1 ) ) |
| 15 |
7 13 14
|
syl2anc |
|- ( N e. ( ZZ>= ` 2 ) -> ( 0 < ( 1 / N ) /\ ( 1 / N ) < 1 ) ) |
| 16 |
15
|
simprd |
|- ( N e. ( ZZ>= ` 2 ) -> ( 1 / N ) < 1 ) |
| 17 |
16
|
adantl |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( 1 / N ) < 1 ) |
| 18 |
|
prmgt1 |
|- ( P e. Prime -> 1 < P ) |
| 19 |
18
|
adantr |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> 1 < P ) |
| 20 |
|
1red |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> 1 e. RR ) |
| 21 |
3 19 11 20
|
cxpltd |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( ( 1 / N ) < 1 <-> ( P ^c ( 1 / N ) ) < ( P ^c 1 ) ) ) |
| 22 |
17 21
|
mpbid |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( P ^c ( 1 / N ) ) < ( P ^c 1 ) ) |
| 23 |
2
|
nncnd |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> P e. CC ) |
| 24 |
23
|
cxp1d |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( P ^c 1 ) = P ) |
| 25 |
22 24
|
breqtrd |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( P ^c ( 1 / N ) ) < P ) |
| 26 |
12 25
|
ltned |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( P ^c ( 1 / N ) ) =/= P ) |
| 27 |
26
|
neneqd |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> -. ( P ^c ( 1 / N ) ) = P ) |
| 28 |
27
|
adantr |
|- ( ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> -. ( P ^c ( 1 / N ) ) = P ) |
| 29 |
23
|
cxp0d |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( P ^c 0 ) = 1 ) |
| 30 |
15
|
simpld |
|- ( N e. ( ZZ>= ` 2 ) -> 0 < ( 1 / N ) ) |
| 31 |
30
|
adantl |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> 0 < ( 1 / N ) ) |
| 32 |
3 19 4 11
|
cxpltd |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( 0 < ( 1 / N ) <-> ( P ^c 0 ) < ( P ^c ( 1 / N ) ) ) ) |
| 33 |
31 32
|
mpbid |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( P ^c 0 ) < ( P ^c ( 1 / N ) ) ) |
| 34 |
29 33
|
eqbrtrrd |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> 1 < ( P ^c ( 1 / N ) ) ) |
| 35 |
20 34
|
gtned |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( P ^c ( 1 / N ) ) =/= 1 ) |
| 36 |
35
|
neneqd |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> -. ( P ^c ( 1 / N ) ) = 1 ) |
| 37 |
36
|
adantr |
|- ( ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> -. ( P ^c ( 1 / N ) ) = 1 ) |
| 38 |
|
dvdsprime |
|- ( ( P e. Prime /\ ( P ^c ( 1 / N ) ) e. NN ) -> ( ( P ^c ( 1 / N ) ) || P <-> ( ( P ^c ( 1 / N ) ) = P \/ ( P ^c ( 1 / N ) ) = 1 ) ) ) |
| 39 |
38
|
adantlr |
|- ( ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> ( ( P ^c ( 1 / N ) ) || P <-> ( ( P ^c ( 1 / N ) ) = P \/ ( P ^c ( 1 / N ) ) = 1 ) ) ) |
| 40 |
39
|
biimpd |
|- ( ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> ( ( P ^c ( 1 / N ) ) || P -> ( ( P ^c ( 1 / N ) ) = P \/ ( P ^c ( 1 / N ) ) = 1 ) ) ) |
| 41 |
28 37 40
|
mtord |
|- ( ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> -. ( P ^c ( 1 / N ) ) || P ) |
| 42 |
|
nan |
|- ( ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> -. ( ( P ^c ( 1 / N ) ) e. NN /\ ( P ^c ( 1 / N ) ) || P ) ) <-> ( ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> -. ( P ^c ( 1 / N ) ) || P ) ) |
| 43 |
41 42
|
mpbir |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> -. ( ( P ^c ( 1 / N ) ) e. NN /\ ( P ^c ( 1 / N ) ) || P ) ) |
| 44 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
| 45 |
44
|
3ad2ant1 |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> P e. ZZ ) |
| 46 |
|
eluz2nn |
|- ( N e. ( ZZ>= ` 2 ) -> N e. NN ) |
| 47 |
46
|
3ad2ant2 |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> N e. NN ) |
| 48 |
|
simp3 |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> ( P ^c ( 1 / N ) ) e. NN ) |
| 49 |
|
zrtdvds |
|- ( ( P e. ZZ /\ N e. NN /\ ( P ^c ( 1 / N ) ) e. NN ) -> ( P ^c ( 1 / N ) ) || P ) |
| 50 |
45 47 48 49
|
syl3anc |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> ( P ^c ( 1 / N ) ) || P ) |
| 51 |
50
|
3expia |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( ( P ^c ( 1 / N ) ) e. NN -> ( P ^c ( 1 / N ) ) || P ) ) |
| 52 |
51
|
ancld |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( ( P ^c ( 1 / N ) ) e. NN -> ( ( P ^c ( 1 / N ) ) e. NN /\ ( P ^c ( 1 / N ) ) || P ) ) ) |
| 53 |
43 52
|
mtod |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> -. ( P ^c ( 1 / N ) ) e. NN ) |
| 54 |
1
|
nnrpd |
|- ( P e. Prime -> P e. RR+ ) |
| 55 |
54
|
3ad2ant1 |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) /\ ( P ^c ( 1 / N ) ) e. ZZ ) -> P e. RR+ ) |
| 56 |
7
|
3ad2ant2 |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) /\ ( P ^c ( 1 / N ) ) e. ZZ ) -> N e. RR ) |
| 57 |
9
|
3ad2ant2 |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) /\ ( P ^c ( 1 / N ) ) e. ZZ ) -> N =/= 0 ) |
| 58 |
56 57
|
rereccld |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) /\ ( P ^c ( 1 / N ) ) e. ZZ ) -> ( 1 / N ) e. RR ) |
| 59 |
55 58
|
cxpgt0d |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) /\ ( P ^c ( 1 / N ) ) e. ZZ ) -> 0 < ( P ^c ( 1 / N ) ) ) |
| 60 |
59
|
3expia |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( ( P ^c ( 1 / N ) ) e. ZZ -> 0 < ( P ^c ( 1 / N ) ) ) ) |
| 61 |
60
|
ancld |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( ( P ^c ( 1 / N ) ) e. ZZ -> ( ( P ^c ( 1 / N ) ) e. ZZ /\ 0 < ( P ^c ( 1 / N ) ) ) ) ) |
| 62 |
|
elnnz |
|- ( ( P ^c ( 1 / N ) ) e. NN <-> ( ( P ^c ( 1 / N ) ) e. ZZ /\ 0 < ( P ^c ( 1 / N ) ) ) ) |
| 63 |
61 62
|
imbitrrdi |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( ( P ^c ( 1 / N ) ) e. ZZ -> ( P ^c ( 1 / N ) ) e. NN ) ) |
| 64 |
53 63
|
mtod |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> -. ( P ^c ( 1 / N ) ) e. ZZ ) |
| 65 |
44
|
3ad2ant1 |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) /\ ( P ^c ( 1 / N ) ) e. QQ ) -> P e. ZZ ) |
| 66 |
46
|
3ad2ant2 |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) /\ ( P ^c ( 1 / N ) ) e. QQ ) -> N e. NN ) |
| 67 |
|
simp3 |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) /\ ( P ^c ( 1 / N ) ) e. QQ ) -> ( P ^c ( 1 / N ) ) e. QQ ) |
| 68 |
|
zrtelqelz |
|- ( ( P e. ZZ /\ N e. NN /\ ( P ^c ( 1 / N ) ) e. QQ ) -> ( P ^c ( 1 / N ) ) e. ZZ ) |
| 69 |
65 66 67 68
|
syl3anc |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) /\ ( P ^c ( 1 / N ) ) e. QQ ) -> ( P ^c ( 1 / N ) ) e. ZZ ) |
| 70 |
69
|
3expia |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( ( P ^c ( 1 / N ) ) e. QQ -> ( P ^c ( 1 / N ) ) e. ZZ ) ) |
| 71 |
64 70
|
mtod |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> -. ( P ^c ( 1 / N ) ) e. QQ ) |
| 72 |
12 71
|
eldifd |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( P ^c ( 1 / N ) ) e. ( RR \ QQ ) ) |