Step |
Hyp |
Ref |
Expression |
1 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
2 |
1
|
adantr |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> P e. NN ) |
3 |
2
|
nnred |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> P e. RR ) |
4 |
|
0red |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> 0 e. RR ) |
5 |
2
|
nngt0d |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> 0 < P ) |
6 |
4 3 5
|
ltled |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> 0 <_ P ) |
7 |
|
eluzelre |
|- ( N e. ( ZZ>= ` 2 ) -> N e. RR ) |
8 |
7
|
adantl |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> N e. RR ) |
9 |
|
eluz2n0 |
|- ( N e. ( ZZ>= ` 2 ) -> N =/= 0 ) |
10 |
9
|
adantl |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> N =/= 0 ) |
11 |
8 10
|
rereccld |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( 1 / N ) e. RR ) |
12 |
3 6 11
|
recxpcld |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( P ^c ( 1 / N ) ) e. RR ) |
13 |
3
|
adantr |
|- ( ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> P e. RR ) |
14 |
6
|
adantr |
|- ( ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> 0 <_ P ) |
15 |
11
|
adantr |
|- ( ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> ( 1 / N ) e. RR ) |
16 |
13 14 15
|
recxpcld |
|- ( ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> ( P ^c ( 1 / N ) ) e. RR ) |
17 |
7
|
ad2antlr |
|- ( ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> N e. RR ) |
18 |
|
eluz2gt1 |
|- ( N e. ( ZZ>= ` 2 ) -> 1 < N ) |
19 |
18
|
ad2antlr |
|- ( ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> 1 < N ) |
20 |
|
recgt1i |
|- ( ( N e. RR /\ 1 < N ) -> ( 0 < ( 1 / N ) /\ ( 1 / N ) < 1 ) ) |
21 |
20
|
simprd |
|- ( ( N e. RR /\ 1 < N ) -> ( 1 / N ) < 1 ) |
22 |
17 19 21
|
syl2anc |
|- ( ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> ( 1 / N ) < 1 ) |
23 |
|
simpll |
|- ( ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> P e. Prime ) |
24 |
|
prmgt1 |
|- ( P e. Prime -> 1 < P ) |
25 |
23 24
|
syl |
|- ( ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> 1 < P ) |
26 |
|
1red |
|- ( ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> 1 e. RR ) |
27 |
13 25 15 26
|
cxpltd |
|- ( ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> ( ( 1 / N ) < 1 <-> ( P ^c ( 1 / N ) ) < ( P ^c 1 ) ) ) |
28 |
22 27
|
mpbid |
|- ( ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> ( P ^c ( 1 / N ) ) < ( P ^c 1 ) ) |
29 |
13
|
recnd |
|- ( ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> P e. CC ) |
30 |
29
|
cxp1d |
|- ( ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> ( P ^c 1 ) = P ) |
31 |
28 30
|
breqtrd |
|- ( ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> ( P ^c ( 1 / N ) ) < P ) |
32 |
16 31
|
ltned |
|- ( ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> ( P ^c ( 1 / N ) ) =/= P ) |
33 |
32
|
neneqd |
|- ( ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> -. ( P ^c ( 1 / N ) ) = P ) |
34 |
29
|
cxp0d |
|- ( ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> ( P ^c 0 ) = 1 ) |
35 |
20
|
simpld |
|- ( ( N e. RR /\ 1 < N ) -> 0 < ( 1 / N ) ) |
36 |
17 19 35
|
syl2anc |
|- ( ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> 0 < ( 1 / N ) ) |
37 |
|
0red |
|- ( ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> 0 e. RR ) |
38 |
13 25 37 15
|
cxpltd |
|- ( ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> ( 0 < ( 1 / N ) <-> ( P ^c 0 ) < ( P ^c ( 1 / N ) ) ) ) |
39 |
36 38
|
mpbid |
|- ( ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> ( P ^c 0 ) < ( P ^c ( 1 / N ) ) ) |
40 |
34 39
|
eqbrtrrd |
|- ( ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> 1 < ( P ^c ( 1 / N ) ) ) |
41 |
26 40
|
gtned |
|- ( ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> ( P ^c ( 1 / N ) ) =/= 1 ) |
42 |
41
|
neneqd |
|- ( ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> -. ( P ^c ( 1 / N ) ) = 1 ) |
43 |
|
dvdsprime |
|- ( ( P e. Prime /\ ( P ^c ( 1 / N ) ) e. NN ) -> ( ( P ^c ( 1 / N ) ) || P <-> ( ( P ^c ( 1 / N ) ) = P \/ ( P ^c ( 1 / N ) ) = 1 ) ) ) |
44 |
43
|
adantlr |
|- ( ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> ( ( P ^c ( 1 / N ) ) || P <-> ( ( P ^c ( 1 / N ) ) = P \/ ( P ^c ( 1 / N ) ) = 1 ) ) ) |
45 |
44
|
biimpd |
|- ( ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> ( ( P ^c ( 1 / N ) ) || P -> ( ( P ^c ( 1 / N ) ) = P \/ ( P ^c ( 1 / N ) ) = 1 ) ) ) |
46 |
33 42 45
|
mtord |
|- ( ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> -. ( P ^c ( 1 / N ) ) || P ) |
47 |
|
nan |
|- ( ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> -. ( ( P ^c ( 1 / N ) ) e. NN /\ ( P ^c ( 1 / N ) ) || P ) ) <-> ( ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> -. ( P ^c ( 1 / N ) ) || P ) ) |
48 |
46 47
|
mpbir |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> -. ( ( P ^c ( 1 / N ) ) e. NN /\ ( P ^c ( 1 / N ) ) || P ) ) |
49 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
50 |
49
|
3ad2ant1 |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> P e. ZZ ) |
51 |
|
eluz2nn |
|- ( N e. ( ZZ>= ` 2 ) -> N e. NN ) |
52 |
51
|
3ad2ant2 |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> N e. NN ) |
53 |
|
simp3 |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> ( P ^c ( 1 / N ) ) e. NN ) |
54 |
|
zrtdvds |
|- ( ( P e. ZZ /\ N e. NN /\ ( P ^c ( 1 / N ) ) e. NN ) -> ( P ^c ( 1 / N ) ) || P ) |
55 |
50 52 53 54
|
syl3anc |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> ( P ^c ( 1 / N ) ) || P ) |
56 |
55
|
3expia |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( ( P ^c ( 1 / N ) ) e. NN -> ( P ^c ( 1 / N ) ) || P ) ) |
57 |
56
|
ancld |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( ( P ^c ( 1 / N ) ) e. NN -> ( ( P ^c ( 1 / N ) ) e. NN /\ ( P ^c ( 1 / N ) ) || P ) ) ) |
58 |
48 57
|
mtod |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> -. ( P ^c ( 1 / N ) ) e. NN ) |
59 |
1
|
nnrpd |
|- ( P e. Prime -> P e. RR+ ) |
60 |
59
|
3ad2ant1 |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) /\ ( P ^c ( 1 / N ) ) e. ZZ ) -> P e. RR+ ) |
61 |
7
|
3ad2ant2 |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) /\ ( P ^c ( 1 / N ) ) e. ZZ ) -> N e. RR ) |
62 |
9
|
3ad2ant2 |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) /\ ( P ^c ( 1 / N ) ) e. ZZ ) -> N =/= 0 ) |
63 |
61 62
|
rereccld |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) /\ ( P ^c ( 1 / N ) ) e. ZZ ) -> ( 1 / N ) e. RR ) |
64 |
60 63
|
cxpgt0d |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) /\ ( P ^c ( 1 / N ) ) e. ZZ ) -> 0 < ( P ^c ( 1 / N ) ) ) |
65 |
64
|
3expia |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( ( P ^c ( 1 / N ) ) e. ZZ -> 0 < ( P ^c ( 1 / N ) ) ) ) |
66 |
65
|
ancld |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( ( P ^c ( 1 / N ) ) e. ZZ -> ( ( P ^c ( 1 / N ) ) e. ZZ /\ 0 < ( P ^c ( 1 / N ) ) ) ) ) |
67 |
|
elnnz |
|- ( ( P ^c ( 1 / N ) ) e. NN <-> ( ( P ^c ( 1 / N ) ) e. ZZ /\ 0 < ( P ^c ( 1 / N ) ) ) ) |
68 |
66 67
|
syl6ibr |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( ( P ^c ( 1 / N ) ) e. ZZ -> ( P ^c ( 1 / N ) ) e. NN ) ) |
69 |
58 68
|
mtod |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> -. ( P ^c ( 1 / N ) ) e. ZZ ) |
70 |
49
|
3ad2ant1 |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) /\ ( P ^c ( 1 / N ) ) e. QQ ) -> P e. ZZ ) |
71 |
51
|
3ad2ant2 |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) /\ ( P ^c ( 1 / N ) ) e. QQ ) -> N e. NN ) |
72 |
|
simp3 |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) /\ ( P ^c ( 1 / N ) ) e. QQ ) -> ( P ^c ( 1 / N ) ) e. QQ ) |
73 |
|
zrtelqelz |
|- ( ( P e. ZZ /\ N e. NN /\ ( P ^c ( 1 / N ) ) e. QQ ) -> ( P ^c ( 1 / N ) ) e. ZZ ) |
74 |
70 71 72 73
|
syl3anc |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) /\ ( P ^c ( 1 / N ) ) e. QQ ) -> ( P ^c ( 1 / N ) ) e. ZZ ) |
75 |
74
|
3expia |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( ( P ^c ( 1 / N ) ) e. QQ -> ( P ^c ( 1 / N ) ) e. ZZ ) ) |
76 |
69 75
|
mtod |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> -. ( P ^c ( 1 / N ) ) e. QQ ) |
77 |
12 76
|
eldifd |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( P ^c ( 1 / N ) ) e. ( RR \ QQ ) ) |