Metamath Proof Explorer


Theorem rtprmirr

Description: The root of a prime number is irrational. (Contributed by Steven Nguyen, 6-Apr-2023)

Ref Expression
Assertion rtprmirr P N 2 P 1 N

Proof

Step Hyp Ref Expression
1 prmnn P P
2 1 adantr P N 2 P
3 2 nnred P N 2 P
4 0red P N 2 0
5 2 nngt0d P N 2 0 < P
6 4 3 5 ltled P N 2 0 P
7 eluzelre N 2 N
8 7 adantl P N 2 N
9 eluz2n0 N 2 N 0
10 9 adantl P N 2 N 0
11 8 10 rereccld P N 2 1 N
12 3 6 11 recxpcld P N 2 P 1 N
13 3 adantr P N 2 P 1 N P
14 6 adantr P N 2 P 1 N 0 P
15 11 adantr P N 2 P 1 N 1 N
16 13 14 15 recxpcld P N 2 P 1 N P 1 N
17 7 ad2antlr P N 2 P 1 N N
18 eluz2gt1 N 2 1 < N
19 18 ad2antlr P N 2 P 1 N 1 < N
20 recgt1i N 1 < N 0 < 1 N 1 N < 1
21 20 simprd N 1 < N 1 N < 1
22 17 19 21 syl2anc P N 2 P 1 N 1 N < 1
23 simpll P N 2 P 1 N P
24 prmgt1 P 1 < P
25 23 24 syl P N 2 P 1 N 1 < P
26 1red P N 2 P 1 N 1
27 13 25 15 26 cxpltd P N 2 P 1 N 1 N < 1 P 1 N < P 1
28 22 27 mpbid P N 2 P 1 N P 1 N < P 1
29 13 recnd P N 2 P 1 N P
30 29 cxp1d P N 2 P 1 N P 1 = P
31 28 30 breqtrd P N 2 P 1 N P 1 N < P
32 16 31 ltned P N 2 P 1 N P 1 N P
33 32 neneqd P N 2 P 1 N ¬ P 1 N = P
34 29 cxp0d P N 2 P 1 N P 0 = 1
35 20 simpld N 1 < N 0 < 1 N
36 17 19 35 syl2anc P N 2 P 1 N 0 < 1 N
37 0red P N 2 P 1 N 0
38 13 25 37 15 cxpltd P N 2 P 1 N 0 < 1 N P 0 < P 1 N
39 36 38 mpbid P N 2 P 1 N P 0 < P 1 N
40 34 39 eqbrtrrd P N 2 P 1 N 1 < P 1 N
41 26 40 gtned P N 2 P 1 N P 1 N 1
42 41 neneqd P N 2 P 1 N ¬ P 1 N = 1
43 dvdsprime P P 1 N P 1 N P P 1 N = P P 1 N = 1
44 43 adantlr P N 2 P 1 N P 1 N P P 1 N = P P 1 N = 1
45 44 biimpd P N 2 P 1 N P 1 N P P 1 N = P P 1 N = 1
46 33 42 45 mtord P N 2 P 1 N ¬ P 1 N P
47 nan P N 2 ¬ P 1 N P 1 N P P N 2 P 1 N ¬ P 1 N P
48 46 47 mpbir P N 2 ¬ P 1 N P 1 N P
49 prmz P P
50 49 3ad2ant1 P N 2 P 1 N P
51 eluz2nn N 2 N
52 51 3ad2ant2 P N 2 P 1 N N
53 simp3 P N 2 P 1 N P 1 N
54 zrtdvds P N P 1 N P 1 N P
55 50 52 53 54 syl3anc P N 2 P 1 N P 1 N P
56 55 3expia P N 2 P 1 N P 1 N P
57 56 ancld P N 2 P 1 N P 1 N P 1 N P
58 48 57 mtod P N 2 ¬ P 1 N
59 1 nnrpd P P +
60 59 3ad2ant1 P N 2 P 1 N P +
61 7 3ad2ant2 P N 2 P 1 N N
62 9 3ad2ant2 P N 2 P 1 N N 0
63 61 62 rereccld P N 2 P 1 N 1 N
64 60 63 cxpgt0d P N 2 P 1 N 0 < P 1 N
65 64 3expia P N 2 P 1 N 0 < P 1 N
66 65 ancld P N 2 P 1 N P 1 N 0 < P 1 N
67 elnnz P 1 N P 1 N 0 < P 1 N
68 66 67 syl6ibr P N 2 P 1 N P 1 N
69 58 68 mtod P N 2 ¬ P 1 N
70 49 3ad2ant1 P N 2 P 1 N P
71 51 3ad2ant2 P N 2 P 1 N N
72 simp3 P N 2 P 1 N P 1 N
73 zrtelqelz P N P 1 N P 1 N
74 70 71 72 73 syl3anc P N 2 P 1 N P 1 N
75 74 3expia P N 2 P 1 N P 1 N
76 69 75 mtod P N 2 ¬ P 1 N
77 12 76 eldifd P N 2 P 1 N