Metamath Proof Explorer


Theorem cxp0d

Description: Value of the complex power function when the second argument is zero. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypothesis cxp0d.1 φA
Assertion cxp0d φA0=1

Proof

Step Hyp Ref Expression
1 cxp0d.1 φA
2 cxp0 AA0=1
3 1 2 syl φA0=1