| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnm1nn0 |
|- ( N e. NN -> ( N - 1 ) e. NN0 ) |
| 2 |
|
zexpcl |
|- ( ( M e. ZZ /\ ( N - 1 ) e. NN0 ) -> ( M ^ ( N - 1 ) ) e. ZZ ) |
| 3 |
1 2
|
sylan2 |
|- ( ( M e. ZZ /\ N e. NN ) -> ( M ^ ( N - 1 ) ) e. ZZ ) |
| 4 |
|
simpl |
|- ( ( M e. ZZ /\ N e. NN ) -> M e. ZZ ) |
| 5 |
|
dvdsmul2 |
|- ( ( ( M ^ ( N - 1 ) ) e. ZZ /\ M e. ZZ ) -> M || ( ( M ^ ( N - 1 ) ) x. M ) ) |
| 6 |
3 4 5
|
syl2anc |
|- ( ( M e. ZZ /\ N e. NN ) -> M || ( ( M ^ ( N - 1 ) ) x. M ) ) |
| 7 |
|
zcn |
|- ( M e. ZZ -> M e. CC ) |
| 8 |
|
expm1t |
|- ( ( M e. CC /\ N e. NN ) -> ( M ^ N ) = ( ( M ^ ( N - 1 ) ) x. M ) ) |
| 9 |
7 8
|
sylan |
|- ( ( M e. ZZ /\ N e. NN ) -> ( M ^ N ) = ( ( M ^ ( N - 1 ) ) x. M ) ) |
| 10 |
6 9
|
breqtrrd |
|- ( ( M e. ZZ /\ N e. NN ) -> M || ( M ^ N ) ) |