| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							1ex | 
							 |-  1 e. _V  | 
						
						
							| 2 | 
							
								1
							 | 
							snid | 
							 |-  1 e. { 1 } | 
						
						
							| 3 | 
							
								
							 | 
							ax-1ne0 | 
							 |-  1 =/= 0  | 
						
						
							| 4 | 
							
								
							 | 
							ax-1cn | 
							 |-  1 e. CC  | 
						
						
							| 5 | 
							
								
							 | 
							snssi | 
							 |-  ( 1 e. CC -> { 1 } C_ CC ) | 
						
						
							| 6 | 
							
								4 5
							 | 
							ax-mp | 
							 |-  { 1 } C_ CC | 
						
						
							| 7 | 
							
								
							 | 
							elsni | 
							 |-  ( x e. { 1 } -> x = 1 ) | 
						
						
							| 8 | 
							
								
							 | 
							elsni | 
							 |-  ( y e. { 1 } -> y = 1 ) | 
						
						
							| 9 | 
							
								
							 | 
							oveq12 | 
							 |-  ( ( x = 1 /\ y = 1 ) -> ( x x. y ) = ( 1 x. 1 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							1t1e1 | 
							 |-  ( 1 x. 1 ) = 1  | 
						
						
							| 11 | 
							
								9 10
							 | 
							eqtrdi | 
							 |-  ( ( x = 1 /\ y = 1 ) -> ( x x. y ) = 1 )  | 
						
						
							| 12 | 
							
								7 8 11
							 | 
							syl2an | 
							 |-  ( ( x e. { 1 } /\ y e. { 1 } ) -> ( x x. y ) = 1 ) | 
						
						
							| 13 | 
							
								
							 | 
							ovex | 
							 |-  ( x x. y ) e. _V  | 
						
						
							| 14 | 
							
								13
							 | 
							elsn | 
							 |-  ( ( x x. y ) e. { 1 } <-> ( x x. y ) = 1 ) | 
						
						
							| 15 | 
							
								12 14
							 | 
							sylibr | 
							 |-  ( ( x e. { 1 } /\ y e. { 1 } ) -> ( x x. y ) e. { 1 } ) | 
						
						
							| 16 | 
							
								7
							 | 
							oveq2d | 
							 |-  ( x e. { 1 } -> ( 1 / x ) = ( 1 / 1 ) ) | 
						
						
							| 17 | 
							
								
							 | 
							1div1e1 | 
							 |-  ( 1 / 1 ) = 1  | 
						
						
							| 18 | 
							
								16 17
							 | 
							eqtrdi | 
							 |-  ( x e. { 1 } -> ( 1 / x ) = 1 ) | 
						
						
							| 19 | 
							
								
							 | 
							ovex | 
							 |-  ( 1 / x ) e. _V  | 
						
						
							| 20 | 
							
								19
							 | 
							elsn | 
							 |-  ( ( 1 / x ) e. { 1 } <-> ( 1 / x ) = 1 ) | 
						
						
							| 21 | 
							
								18 20
							 | 
							sylibr | 
							 |-  ( x e. { 1 } -> ( 1 / x ) e. { 1 } ) | 
						
						
							| 22 | 
							
								21
							 | 
							adantr | 
							 |-  ( ( x e. { 1 } /\ x =/= 0 ) -> ( 1 / x ) e. { 1 } ) | 
						
						
							| 23 | 
							
								6 15 2 22
							 | 
							expcl2lem | 
							 |-  ( ( 1 e. { 1 } /\ 1 =/= 0 /\ N e. ZZ ) -> ( 1 ^ N ) e. { 1 } ) | 
						
						
							| 24 | 
							
								2 3 23
							 | 
							mp3an12 | 
							 |-  ( N e. ZZ -> ( 1 ^ N ) e. { 1 } ) | 
						
						
							| 25 | 
							
								
							 | 
							elsni | 
							 |-  ( ( 1 ^ N ) e. { 1 } -> ( 1 ^ N ) = 1 ) | 
						
						
							| 26 | 
							
								24 25
							 | 
							syl | 
							 |-  ( N e. ZZ -> ( 1 ^ N ) = 1 )  |