| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							oveq2 | 
							 |-  ( j = 1 -> ( A ^ j ) = ( A ^ 1 ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							eqeq1d | 
							 |-  ( j = 1 -> ( ( A ^ j ) = 0 <-> ( A ^ 1 ) = 0 ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							bibi1d | 
							 |-  ( j = 1 -> ( ( ( A ^ j ) = 0 <-> A = 0 ) <-> ( ( A ^ 1 ) = 0 <-> A = 0 ) ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							imbi2d | 
							 |-  ( j = 1 -> ( ( A e. CC -> ( ( A ^ j ) = 0 <-> A = 0 ) ) <-> ( A e. CC -> ( ( A ^ 1 ) = 0 <-> A = 0 ) ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							oveq2 | 
							 |-  ( j = k -> ( A ^ j ) = ( A ^ k ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							eqeq1d | 
							 |-  ( j = k -> ( ( A ^ j ) = 0 <-> ( A ^ k ) = 0 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							bibi1d | 
							 |-  ( j = k -> ( ( ( A ^ j ) = 0 <-> A = 0 ) <-> ( ( A ^ k ) = 0 <-> A = 0 ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							imbi2d | 
							 |-  ( j = k -> ( ( A e. CC -> ( ( A ^ j ) = 0 <-> A = 0 ) ) <-> ( A e. CC -> ( ( A ^ k ) = 0 <-> A = 0 ) ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							oveq2 | 
							 |-  ( j = ( k + 1 ) -> ( A ^ j ) = ( A ^ ( k + 1 ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							eqeq1d | 
							 |-  ( j = ( k + 1 ) -> ( ( A ^ j ) = 0 <-> ( A ^ ( k + 1 ) ) = 0 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							bibi1d | 
							 |-  ( j = ( k + 1 ) -> ( ( ( A ^ j ) = 0 <-> A = 0 ) <-> ( ( A ^ ( k + 1 ) ) = 0 <-> A = 0 ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							imbi2d | 
							 |-  ( j = ( k + 1 ) -> ( ( A e. CC -> ( ( A ^ j ) = 0 <-> A = 0 ) ) <-> ( A e. CC -> ( ( A ^ ( k + 1 ) ) = 0 <-> A = 0 ) ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							oveq2 | 
							 |-  ( j = N -> ( A ^ j ) = ( A ^ N ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							eqeq1d | 
							 |-  ( j = N -> ( ( A ^ j ) = 0 <-> ( A ^ N ) = 0 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							bibi1d | 
							 |-  ( j = N -> ( ( ( A ^ j ) = 0 <-> A = 0 ) <-> ( ( A ^ N ) = 0 <-> A = 0 ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							imbi2d | 
							 |-  ( j = N -> ( ( A e. CC -> ( ( A ^ j ) = 0 <-> A = 0 ) ) <-> ( A e. CC -> ( ( A ^ N ) = 0 <-> A = 0 ) ) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							exp1 | 
							 |-  ( A e. CC -> ( A ^ 1 ) = A )  | 
						
						
							| 18 | 
							
								17
							 | 
							eqeq1d | 
							 |-  ( A e. CC -> ( ( A ^ 1 ) = 0 <-> A = 0 ) )  | 
						
						
							| 19 | 
							
								
							 | 
							nnnn0 | 
							 |-  ( k e. NN -> k e. NN0 )  | 
						
						
							| 20 | 
							
								
							 | 
							expp1 | 
							 |-  ( ( A e. CC /\ k e. NN0 ) -> ( A ^ ( k + 1 ) ) = ( ( A ^ k ) x. A ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							eqeq1d | 
							 |-  ( ( A e. CC /\ k e. NN0 ) -> ( ( A ^ ( k + 1 ) ) = 0 <-> ( ( A ^ k ) x. A ) = 0 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							expcl | 
							 |-  ( ( A e. CC /\ k e. NN0 ) -> ( A ^ k ) e. CC )  | 
						
						
							| 23 | 
							
								
							 | 
							simpl | 
							 |-  ( ( A e. CC /\ k e. NN0 ) -> A e. CC )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							mul0ord | 
							 |-  ( ( A e. CC /\ k e. NN0 ) -> ( ( ( A ^ k ) x. A ) = 0 <-> ( ( A ^ k ) = 0 \/ A = 0 ) ) )  | 
						
						
							| 25 | 
							
								21 24
							 | 
							bitrd | 
							 |-  ( ( A e. CC /\ k e. NN0 ) -> ( ( A ^ ( k + 1 ) ) = 0 <-> ( ( A ^ k ) = 0 \/ A = 0 ) ) )  | 
						
						
							| 26 | 
							
								19 25
							 | 
							sylan2 | 
							 |-  ( ( A e. CC /\ k e. NN ) -> ( ( A ^ ( k + 1 ) ) = 0 <-> ( ( A ^ k ) = 0 \/ A = 0 ) ) )  | 
						
						
							| 27 | 
							
								
							 | 
							biimp | 
							 |-  ( ( ( A ^ k ) = 0 <-> A = 0 ) -> ( ( A ^ k ) = 0 -> A = 0 ) )  | 
						
						
							| 28 | 
							
								
							 | 
							idd | 
							 |-  ( ( ( A ^ k ) = 0 <-> A = 0 ) -> ( A = 0 -> A = 0 ) )  | 
						
						
							| 29 | 
							
								27 28
							 | 
							jaod | 
							 |-  ( ( ( A ^ k ) = 0 <-> A = 0 ) -> ( ( ( A ^ k ) = 0 \/ A = 0 ) -> A = 0 ) )  | 
						
						
							| 30 | 
							
								
							 | 
							olc | 
							 |-  ( A = 0 -> ( ( A ^ k ) = 0 \/ A = 0 ) )  | 
						
						
							| 31 | 
							
								29 30
							 | 
							impbid1 | 
							 |-  ( ( ( A ^ k ) = 0 <-> A = 0 ) -> ( ( ( A ^ k ) = 0 \/ A = 0 ) <-> A = 0 ) )  | 
						
						
							| 32 | 
							
								26 31
							 | 
							sylan9bb | 
							 |-  ( ( ( A e. CC /\ k e. NN ) /\ ( ( A ^ k ) = 0 <-> A = 0 ) ) -> ( ( A ^ ( k + 1 ) ) = 0 <-> A = 0 ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							exp31 | 
							 |-  ( A e. CC -> ( k e. NN -> ( ( ( A ^ k ) = 0 <-> A = 0 ) -> ( ( A ^ ( k + 1 ) ) = 0 <-> A = 0 ) ) ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							com12 | 
							 |-  ( k e. NN -> ( A e. CC -> ( ( ( A ^ k ) = 0 <-> A = 0 ) -> ( ( A ^ ( k + 1 ) ) = 0 <-> A = 0 ) ) ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							a2d | 
							 |-  ( k e. NN -> ( ( A e. CC -> ( ( A ^ k ) = 0 <-> A = 0 ) ) -> ( A e. CC -> ( ( A ^ ( k + 1 ) ) = 0 <-> A = 0 ) ) ) )  | 
						
						
							| 36 | 
							
								4 8 12 16 18 35
							 | 
							nnind | 
							 |-  ( N e. NN -> ( A e. CC -> ( ( A ^ N ) = 0 <-> A = 0 ) ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							impcom | 
							 |-  ( ( A e. CC /\ N e. NN ) -> ( ( A ^ N ) = 0 <-> A = 0 ) )  |