Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Steven Nguyen
Exponents and divisibility
posqsqznn
Metamath Proof Explorer
Description: When a positive rational squared is an integer, the rational is a
positive integer. zsqrtelqelz with all terms squared and positive.
(Contributed by SN , 23-Aug-2024)
Ref
Expression
Hypotheses
posqsqznn.1
⊢ φ → A 2 ∈ ℤ
posqsqznn.2
⊢ φ → A ∈ ℚ
posqsqznn.3
⊢ φ → 0 < A
Assertion
posqsqznn
⊢ φ → A ∈ ℕ
Proof
Step
Hyp
Ref
Expression
1
posqsqznn.1
⊢ φ → A 2 ∈ ℤ
2
posqsqznn.2
⊢ φ → A ∈ ℚ
3
posqsqznn.3
⊢ φ → 0 < A
4
2
qred
⊢ φ → A ∈ ℝ
5
0red
⊢ φ → 0 ∈ ℝ
6
5 4 3
ltled
⊢ φ → 0 ≤ A
7
4 6
sqrtsqd
⊢ φ → A 2 = A
8
7 2
eqeltrd
⊢ φ → A 2 ∈ ℚ
9
zsqrtelqelz
⊢ A 2 ∈ ℤ ∧ A 2 ∈ ℚ → A 2 ∈ ℤ
10
1 8 9
syl2anc
⊢ φ → A 2 ∈ ℤ
11
7 10
eqeltrrd
⊢ φ → A ∈ ℤ
12
elnnz
⊢ A ∈ ℕ ↔ A ∈ ℤ ∧ 0 < A
13
11 3 12
sylanbrc
⊢ φ → A ∈ ℕ