Metamath Proof Explorer


Theorem absexpd

Description: Absolute value of positive integer exponentiation. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses abscld.1
|- ( ph -> A e. CC )
absexpd.2
|- ( ph -> N e. NN0 )
Assertion absexpd
|- ( ph -> ( abs ` ( A ^ N ) ) = ( ( abs ` A ) ^ N ) )

Proof

Step Hyp Ref Expression
1 abscld.1
 |-  ( ph -> A e. CC )
2 absexpd.2
 |-  ( ph -> N e. NN0 )
3 absexp
 |-  ( ( A e. CC /\ N e. NN0 ) -> ( abs ` ( A ^ N ) ) = ( ( abs ` A ) ^ N ) )
4 1 2 3 syl2anc
 |-  ( ph -> ( abs ` ( A ^ N ) ) = ( ( abs ` A ) ^ N ) )