| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnn0 |
|- ( A e. NN0 <-> ( A e. NN \/ A = 0 ) ) |
| 2 |
|
elnn0 |
|- ( B e. NN0 <-> ( B e. NN \/ B = 0 ) ) |
| 3 |
|
dvdsexpnn |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( A || B <-> ( A ^ N ) || ( B ^ N ) ) ) |
| 4 |
3
|
3expia |
|- ( ( A e. NN /\ B e. NN ) -> ( N e. NN -> ( A || B <-> ( A ^ N ) || ( B ^ N ) ) ) ) |
| 5 |
|
nncn |
|- ( B e. NN -> B e. CC ) |
| 6 |
|
expeq0 |
|- ( ( B e. CC /\ N e. NN ) -> ( ( B ^ N ) = 0 <-> B = 0 ) ) |
| 7 |
5 6
|
sylan |
|- ( ( B e. NN /\ N e. NN ) -> ( ( B ^ N ) = 0 <-> B = 0 ) ) |
| 8 |
|
0exp |
|- ( N e. NN -> ( 0 ^ N ) = 0 ) |
| 9 |
8
|
adantl |
|- ( ( B e. NN /\ N e. NN ) -> ( 0 ^ N ) = 0 ) |
| 10 |
9
|
breq1d |
|- ( ( B e. NN /\ N e. NN ) -> ( ( 0 ^ N ) || ( B ^ N ) <-> 0 || ( B ^ N ) ) ) |
| 11 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
| 12 |
|
nnexpcl |
|- ( ( B e. NN /\ N e. NN0 ) -> ( B ^ N ) e. NN ) |
| 13 |
11 12
|
sylan2 |
|- ( ( B e. NN /\ N e. NN ) -> ( B ^ N ) e. NN ) |
| 14 |
13
|
nnzd |
|- ( ( B e. NN /\ N e. NN ) -> ( B ^ N ) e. ZZ ) |
| 15 |
|
0dvds |
|- ( ( B ^ N ) e. ZZ -> ( 0 || ( B ^ N ) <-> ( B ^ N ) = 0 ) ) |
| 16 |
14 15
|
syl |
|- ( ( B e. NN /\ N e. NN ) -> ( 0 || ( B ^ N ) <-> ( B ^ N ) = 0 ) ) |
| 17 |
10 16
|
bitrd |
|- ( ( B e. NN /\ N e. NN ) -> ( ( 0 ^ N ) || ( B ^ N ) <-> ( B ^ N ) = 0 ) ) |
| 18 |
|
nnz |
|- ( B e. NN -> B e. ZZ ) |
| 19 |
|
0dvds |
|- ( B e. ZZ -> ( 0 || B <-> B = 0 ) ) |
| 20 |
18 19
|
syl |
|- ( B e. NN -> ( 0 || B <-> B = 0 ) ) |
| 21 |
20
|
adantr |
|- ( ( B e. NN /\ N e. NN ) -> ( 0 || B <-> B = 0 ) ) |
| 22 |
7 17 21
|
3bitr4rd |
|- ( ( B e. NN /\ N e. NN ) -> ( 0 || B <-> ( 0 ^ N ) || ( B ^ N ) ) ) |
| 23 |
|
breq1 |
|- ( A = 0 -> ( A || B <-> 0 || B ) ) |
| 24 |
|
oveq1 |
|- ( A = 0 -> ( A ^ N ) = ( 0 ^ N ) ) |
| 25 |
24
|
breq1d |
|- ( A = 0 -> ( ( A ^ N ) || ( B ^ N ) <-> ( 0 ^ N ) || ( B ^ N ) ) ) |
| 26 |
23 25
|
bibi12d |
|- ( A = 0 -> ( ( A || B <-> ( A ^ N ) || ( B ^ N ) ) <-> ( 0 || B <-> ( 0 ^ N ) || ( B ^ N ) ) ) ) |
| 27 |
22 26
|
imbitrrid |
|- ( A = 0 -> ( ( B e. NN /\ N e. NN ) -> ( A || B <-> ( A ^ N ) || ( B ^ N ) ) ) ) |
| 28 |
27
|
expdimp |
|- ( ( A = 0 /\ B e. NN ) -> ( N e. NN -> ( A || B <-> ( A ^ N ) || ( B ^ N ) ) ) ) |
| 29 |
|
nnz |
|- ( A e. NN -> A e. ZZ ) |
| 30 |
|
dvds0 |
|- ( A e. ZZ -> A || 0 ) |
| 31 |
29 30
|
syl |
|- ( A e. NN -> A || 0 ) |
| 32 |
31
|
adantr |
|- ( ( A e. NN /\ N e. NN ) -> A || 0 ) |
| 33 |
|
nnexpcl |
|- ( ( A e. NN /\ N e. NN0 ) -> ( A ^ N ) e. NN ) |
| 34 |
11 33
|
sylan2 |
|- ( ( A e. NN /\ N e. NN ) -> ( A ^ N ) e. NN ) |
| 35 |
34
|
nnzd |
|- ( ( A e. NN /\ N e. NN ) -> ( A ^ N ) e. ZZ ) |
| 36 |
|
dvds0 |
|- ( ( A ^ N ) e. ZZ -> ( A ^ N ) || 0 ) |
| 37 |
35 36
|
syl |
|- ( ( A e. NN /\ N e. NN ) -> ( A ^ N ) || 0 ) |
| 38 |
8
|
adantl |
|- ( ( A e. NN /\ N e. NN ) -> ( 0 ^ N ) = 0 ) |
| 39 |
37 38
|
breqtrrd |
|- ( ( A e. NN /\ N e. NN ) -> ( A ^ N ) || ( 0 ^ N ) ) |
| 40 |
32 39
|
2thd |
|- ( ( A e. NN /\ N e. NN ) -> ( A || 0 <-> ( A ^ N ) || ( 0 ^ N ) ) ) |
| 41 |
|
breq2 |
|- ( B = 0 -> ( A || B <-> A || 0 ) ) |
| 42 |
|
oveq1 |
|- ( B = 0 -> ( B ^ N ) = ( 0 ^ N ) ) |
| 43 |
42
|
breq2d |
|- ( B = 0 -> ( ( A ^ N ) || ( B ^ N ) <-> ( A ^ N ) || ( 0 ^ N ) ) ) |
| 44 |
41 43
|
bibi12d |
|- ( B = 0 -> ( ( A || B <-> ( A ^ N ) || ( B ^ N ) ) <-> ( A || 0 <-> ( A ^ N ) || ( 0 ^ N ) ) ) ) |
| 45 |
40 44
|
syl5ibrcom |
|- ( ( A e. NN /\ N e. NN ) -> ( B = 0 -> ( A || B <-> ( A ^ N ) || ( B ^ N ) ) ) ) |
| 46 |
45
|
impancom |
|- ( ( A e. NN /\ B = 0 ) -> ( N e. NN -> ( A || B <-> ( A ^ N ) || ( B ^ N ) ) ) ) |
| 47 |
8 8
|
breq12d |
|- ( N e. NN -> ( ( 0 ^ N ) || ( 0 ^ N ) <-> 0 || 0 ) ) |
| 48 |
47
|
bicomd |
|- ( N e. NN -> ( 0 || 0 <-> ( 0 ^ N ) || ( 0 ^ N ) ) ) |
| 49 |
|
breq12 |
|- ( ( A = 0 /\ B = 0 ) -> ( A || B <-> 0 || 0 ) ) |
| 50 |
|
simpl |
|- ( ( A = 0 /\ B = 0 ) -> A = 0 ) |
| 51 |
50
|
oveq1d |
|- ( ( A = 0 /\ B = 0 ) -> ( A ^ N ) = ( 0 ^ N ) ) |
| 52 |
|
simpr |
|- ( ( A = 0 /\ B = 0 ) -> B = 0 ) |
| 53 |
52
|
oveq1d |
|- ( ( A = 0 /\ B = 0 ) -> ( B ^ N ) = ( 0 ^ N ) ) |
| 54 |
51 53
|
breq12d |
|- ( ( A = 0 /\ B = 0 ) -> ( ( A ^ N ) || ( B ^ N ) <-> ( 0 ^ N ) || ( 0 ^ N ) ) ) |
| 55 |
49 54
|
bibi12d |
|- ( ( A = 0 /\ B = 0 ) -> ( ( A || B <-> ( A ^ N ) || ( B ^ N ) ) <-> ( 0 || 0 <-> ( 0 ^ N ) || ( 0 ^ N ) ) ) ) |
| 56 |
48 55
|
imbitrrid |
|- ( ( A = 0 /\ B = 0 ) -> ( N e. NN -> ( A || B <-> ( A ^ N ) || ( B ^ N ) ) ) ) |
| 57 |
4 28 46 56
|
ccase |
|- ( ( ( A e. NN \/ A = 0 ) /\ ( B e. NN \/ B = 0 ) ) -> ( N e. NN -> ( A || B <-> ( A ^ N ) || ( B ^ N ) ) ) ) |
| 58 |
1 2 57
|
syl2anb |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( N e. NN -> ( A || B <-> ( A ^ N ) || ( B ^ N ) ) ) ) |
| 59 |
58
|
3impia |
|- ( ( A e. NN0 /\ B e. NN0 /\ N e. NN ) -> ( A || B <-> ( A ^ N ) || ( B ^ N ) ) ) |