Step |
Hyp |
Ref |
Expression |
1 |
|
elnn0 |
|- ( A e. NN0 <-> ( A e. NN \/ A = 0 ) ) |
2 |
|
elnn0 |
|- ( B e. NN0 <-> ( B e. NN \/ B = 0 ) ) |
3 |
|
dvdsexpnn |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( A || B <-> ( A ^ N ) || ( B ^ N ) ) ) |
4 |
3
|
3expia |
|- ( ( A e. NN /\ B e. NN ) -> ( N e. NN -> ( A || B <-> ( A ^ N ) || ( B ^ N ) ) ) ) |
5 |
|
nncn |
|- ( B e. NN -> B e. CC ) |
6 |
|
expeq0 |
|- ( ( B e. CC /\ N e. NN ) -> ( ( B ^ N ) = 0 <-> B = 0 ) ) |
7 |
5 6
|
sylan |
|- ( ( B e. NN /\ N e. NN ) -> ( ( B ^ N ) = 0 <-> B = 0 ) ) |
8 |
|
0exp |
|- ( N e. NN -> ( 0 ^ N ) = 0 ) |
9 |
8
|
adantl |
|- ( ( B e. NN /\ N e. NN ) -> ( 0 ^ N ) = 0 ) |
10 |
9
|
breq1d |
|- ( ( B e. NN /\ N e. NN ) -> ( ( 0 ^ N ) || ( B ^ N ) <-> 0 || ( B ^ N ) ) ) |
11 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
12 |
|
nnexpcl |
|- ( ( B e. NN /\ N e. NN0 ) -> ( B ^ N ) e. NN ) |
13 |
11 12
|
sylan2 |
|- ( ( B e. NN /\ N e. NN ) -> ( B ^ N ) e. NN ) |
14 |
13
|
nnzd |
|- ( ( B e. NN /\ N e. NN ) -> ( B ^ N ) e. ZZ ) |
15 |
|
0dvds |
|- ( ( B ^ N ) e. ZZ -> ( 0 || ( B ^ N ) <-> ( B ^ N ) = 0 ) ) |
16 |
14 15
|
syl |
|- ( ( B e. NN /\ N e. NN ) -> ( 0 || ( B ^ N ) <-> ( B ^ N ) = 0 ) ) |
17 |
10 16
|
bitrd |
|- ( ( B e. NN /\ N e. NN ) -> ( ( 0 ^ N ) || ( B ^ N ) <-> ( B ^ N ) = 0 ) ) |
18 |
|
nnz |
|- ( B e. NN -> B e. ZZ ) |
19 |
|
0dvds |
|- ( B e. ZZ -> ( 0 || B <-> B = 0 ) ) |
20 |
18 19
|
syl |
|- ( B e. NN -> ( 0 || B <-> B = 0 ) ) |
21 |
20
|
adantr |
|- ( ( B e. NN /\ N e. NN ) -> ( 0 || B <-> B = 0 ) ) |
22 |
7 17 21
|
3bitr4rd |
|- ( ( B e. NN /\ N e. NN ) -> ( 0 || B <-> ( 0 ^ N ) || ( B ^ N ) ) ) |
23 |
|
breq1 |
|- ( A = 0 -> ( A || B <-> 0 || B ) ) |
24 |
|
oveq1 |
|- ( A = 0 -> ( A ^ N ) = ( 0 ^ N ) ) |
25 |
24
|
breq1d |
|- ( A = 0 -> ( ( A ^ N ) || ( B ^ N ) <-> ( 0 ^ N ) || ( B ^ N ) ) ) |
26 |
23 25
|
bibi12d |
|- ( A = 0 -> ( ( A || B <-> ( A ^ N ) || ( B ^ N ) ) <-> ( 0 || B <-> ( 0 ^ N ) || ( B ^ N ) ) ) ) |
27 |
22 26
|
syl5ibr |
|- ( A = 0 -> ( ( B e. NN /\ N e. NN ) -> ( A || B <-> ( A ^ N ) || ( B ^ N ) ) ) ) |
28 |
27
|
expdimp |
|- ( ( A = 0 /\ B e. NN ) -> ( N e. NN -> ( A || B <-> ( A ^ N ) || ( B ^ N ) ) ) ) |
29 |
|
nnz |
|- ( A e. NN -> A e. ZZ ) |
30 |
|
dvds0 |
|- ( A e. ZZ -> A || 0 ) |
31 |
29 30
|
syl |
|- ( A e. NN -> A || 0 ) |
32 |
31
|
adantr |
|- ( ( A e. NN /\ N e. NN ) -> A || 0 ) |
33 |
|
nnexpcl |
|- ( ( A e. NN /\ N e. NN0 ) -> ( A ^ N ) e. NN ) |
34 |
11 33
|
sylan2 |
|- ( ( A e. NN /\ N e. NN ) -> ( A ^ N ) e. NN ) |
35 |
34
|
nnzd |
|- ( ( A e. NN /\ N e. NN ) -> ( A ^ N ) e. ZZ ) |
36 |
|
dvds0 |
|- ( ( A ^ N ) e. ZZ -> ( A ^ N ) || 0 ) |
37 |
35 36
|
syl |
|- ( ( A e. NN /\ N e. NN ) -> ( A ^ N ) || 0 ) |
38 |
8
|
adantl |
|- ( ( A e. NN /\ N e. NN ) -> ( 0 ^ N ) = 0 ) |
39 |
37 38
|
breqtrrd |
|- ( ( A e. NN /\ N e. NN ) -> ( A ^ N ) || ( 0 ^ N ) ) |
40 |
32 39
|
2thd |
|- ( ( A e. NN /\ N e. NN ) -> ( A || 0 <-> ( A ^ N ) || ( 0 ^ N ) ) ) |
41 |
|
breq2 |
|- ( B = 0 -> ( A || B <-> A || 0 ) ) |
42 |
|
oveq1 |
|- ( B = 0 -> ( B ^ N ) = ( 0 ^ N ) ) |
43 |
42
|
breq2d |
|- ( B = 0 -> ( ( A ^ N ) || ( B ^ N ) <-> ( A ^ N ) || ( 0 ^ N ) ) ) |
44 |
41 43
|
bibi12d |
|- ( B = 0 -> ( ( A || B <-> ( A ^ N ) || ( B ^ N ) ) <-> ( A || 0 <-> ( A ^ N ) || ( 0 ^ N ) ) ) ) |
45 |
40 44
|
syl5ibrcom |
|- ( ( A e. NN /\ N e. NN ) -> ( B = 0 -> ( A || B <-> ( A ^ N ) || ( B ^ N ) ) ) ) |
46 |
45
|
impancom |
|- ( ( A e. NN /\ B = 0 ) -> ( N e. NN -> ( A || B <-> ( A ^ N ) || ( B ^ N ) ) ) ) |
47 |
8 8
|
breq12d |
|- ( N e. NN -> ( ( 0 ^ N ) || ( 0 ^ N ) <-> 0 || 0 ) ) |
48 |
47
|
bicomd |
|- ( N e. NN -> ( 0 || 0 <-> ( 0 ^ N ) || ( 0 ^ N ) ) ) |
49 |
|
breq12 |
|- ( ( A = 0 /\ B = 0 ) -> ( A || B <-> 0 || 0 ) ) |
50 |
|
simpl |
|- ( ( A = 0 /\ B = 0 ) -> A = 0 ) |
51 |
50
|
oveq1d |
|- ( ( A = 0 /\ B = 0 ) -> ( A ^ N ) = ( 0 ^ N ) ) |
52 |
|
simpr |
|- ( ( A = 0 /\ B = 0 ) -> B = 0 ) |
53 |
52
|
oveq1d |
|- ( ( A = 0 /\ B = 0 ) -> ( B ^ N ) = ( 0 ^ N ) ) |
54 |
51 53
|
breq12d |
|- ( ( A = 0 /\ B = 0 ) -> ( ( A ^ N ) || ( B ^ N ) <-> ( 0 ^ N ) || ( 0 ^ N ) ) ) |
55 |
49 54
|
bibi12d |
|- ( ( A = 0 /\ B = 0 ) -> ( ( A || B <-> ( A ^ N ) || ( B ^ N ) ) <-> ( 0 || 0 <-> ( 0 ^ N ) || ( 0 ^ N ) ) ) ) |
56 |
48 55
|
syl5ibr |
|- ( ( A = 0 /\ B = 0 ) -> ( N e. NN -> ( A || B <-> ( A ^ N ) || ( B ^ N ) ) ) ) |
57 |
4 28 46 56
|
ccase |
|- ( ( ( A e. NN \/ A = 0 ) /\ ( B e. NN \/ B = 0 ) ) -> ( N e. NN -> ( A || B <-> ( A ^ N ) || ( B ^ N ) ) ) ) |
58 |
1 2 57
|
syl2anb |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( N e. NN -> ( A || B <-> ( A ^ N ) || ( B ^ N ) ) ) ) |
59 |
58
|
3impia |
|- ( ( A e. NN0 /\ B e. NN0 /\ N e. NN ) -> ( A || B <-> ( A ^ N ) || ( B ^ N ) ) ) |