| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnz |
|- ( A e. NN -> A e. ZZ ) |
| 2 |
|
nnz |
|- ( B e. NN -> B e. ZZ ) |
| 3 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
| 4 |
|
dvdsexpim |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) -> ( A || B -> ( A ^ N ) || ( B ^ N ) ) ) |
| 5 |
1 2 3 4
|
syl3an |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( A || B -> ( A ^ N ) || ( B ^ N ) ) ) |
| 6 |
|
gcdnncl |
|- ( ( A e. NN /\ B e. NN ) -> ( A gcd B ) e. NN ) |
| 7 |
6
|
nnrpd |
|- ( ( A e. NN /\ B e. NN ) -> ( A gcd B ) e. RR+ ) |
| 8 |
7
|
3adant3 |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( A gcd B ) e. RR+ ) |
| 9 |
8
|
adantr |
|- ( ( ( A e. NN /\ B e. NN /\ N e. NN ) /\ ( A ^ N ) || ( B ^ N ) ) -> ( A gcd B ) e. RR+ ) |
| 10 |
|
simpl1 |
|- ( ( ( A e. NN /\ B e. NN /\ N e. NN ) /\ ( A ^ N ) || ( B ^ N ) ) -> A e. NN ) |
| 11 |
10
|
nnrpd |
|- ( ( ( A e. NN /\ B e. NN /\ N e. NN ) /\ ( A ^ N ) || ( B ^ N ) ) -> A e. RR+ ) |
| 12 |
|
simpl3 |
|- ( ( ( A e. NN /\ B e. NN /\ N e. NN ) /\ ( A ^ N ) || ( B ^ N ) ) -> N e. NN ) |
| 13 |
|
expgcd |
|- ( ( A e. NN /\ B e. NN /\ N e. NN0 ) -> ( ( A gcd B ) ^ N ) = ( ( A ^ N ) gcd ( B ^ N ) ) ) |
| 14 |
3 13
|
syl3an3 |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( ( A gcd B ) ^ N ) = ( ( A ^ N ) gcd ( B ^ N ) ) ) |
| 15 |
14
|
adantr |
|- ( ( ( A e. NN /\ B e. NN /\ N e. NN ) /\ ( A ^ N ) || ( B ^ N ) ) -> ( ( A gcd B ) ^ N ) = ( ( A ^ N ) gcd ( B ^ N ) ) ) |
| 16 |
|
simp1 |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> A e. NN ) |
| 17 |
3
|
3ad2ant3 |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> N e. NN0 ) |
| 18 |
16 17
|
nnexpcld |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( A ^ N ) e. NN ) |
| 19 |
|
simp2 |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> B e. NN ) |
| 20 |
19 17
|
nnexpcld |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( B ^ N ) e. NN ) |
| 21 |
|
gcdeq |
|- ( ( ( A ^ N ) e. NN /\ ( B ^ N ) e. NN ) -> ( ( ( A ^ N ) gcd ( B ^ N ) ) = ( A ^ N ) <-> ( A ^ N ) || ( B ^ N ) ) ) |
| 22 |
18 20 21
|
syl2anc |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( ( ( A ^ N ) gcd ( B ^ N ) ) = ( A ^ N ) <-> ( A ^ N ) || ( B ^ N ) ) ) |
| 23 |
22
|
biimpar |
|- ( ( ( A e. NN /\ B e. NN /\ N e. NN ) /\ ( A ^ N ) || ( B ^ N ) ) -> ( ( A ^ N ) gcd ( B ^ N ) ) = ( A ^ N ) ) |
| 24 |
15 23
|
eqtrd |
|- ( ( ( A e. NN /\ B e. NN /\ N e. NN ) /\ ( A ^ N ) || ( B ^ N ) ) -> ( ( A gcd B ) ^ N ) = ( A ^ N ) ) |
| 25 |
9 11 12 24
|
exp11nnd |
|- ( ( ( A e. NN /\ B e. NN /\ N e. NN ) /\ ( A ^ N ) || ( B ^ N ) ) -> ( A gcd B ) = A ) |
| 26 |
|
gcddvds |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
| 27 |
26
|
simprd |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) || B ) |
| 28 |
1 2 27
|
syl2an |
|- ( ( A e. NN /\ B e. NN ) -> ( A gcd B ) || B ) |
| 29 |
28
|
3adant3 |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( A gcd B ) || B ) |
| 30 |
29
|
adantr |
|- ( ( ( A e. NN /\ B e. NN /\ N e. NN ) /\ ( A ^ N ) || ( B ^ N ) ) -> ( A gcd B ) || B ) |
| 31 |
25 30
|
eqbrtrrd |
|- ( ( ( A e. NN /\ B e. NN /\ N e. NN ) /\ ( A ^ N ) || ( B ^ N ) ) -> A || B ) |
| 32 |
31
|
ex |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( ( A ^ N ) || ( B ^ N ) -> A || B ) ) |
| 33 |
5 32
|
impbid |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( A || B <-> ( A ^ N ) || ( B ^ N ) ) ) |