Step |
Hyp |
Ref |
Expression |
1 |
|
gcdnncl |
|- ( ( A e. NN /\ B e. NN ) -> ( A gcd B ) e. NN ) |
2 |
1
|
3adant3 |
|- ( ( A e. NN /\ B e. NN /\ N e. NN0 ) -> ( A gcd B ) e. NN ) |
3 |
|
simp3 |
|- ( ( A e. NN /\ B e. NN /\ N e. NN0 ) -> N e. NN0 ) |
4 |
2 3
|
nnexpcld |
|- ( ( A e. NN /\ B e. NN /\ N e. NN0 ) -> ( ( A gcd B ) ^ N ) e. NN ) |
5 |
4
|
nncnd |
|- ( ( A e. NN /\ B e. NN /\ N e. NN0 ) -> ( ( A gcd B ) ^ N ) e. CC ) |
6 |
5
|
mulid1d |
|- ( ( A e. NN /\ B e. NN /\ N e. NN0 ) -> ( ( ( A gcd B ) ^ N ) x. 1 ) = ( ( A gcd B ) ^ N ) ) |
7 |
|
nnexpcl |
|- ( ( A e. NN /\ N e. NN0 ) -> ( A ^ N ) e. NN ) |
8 |
7
|
3adant2 |
|- ( ( A e. NN /\ B e. NN /\ N e. NN0 ) -> ( A ^ N ) e. NN ) |
9 |
8
|
nnzd |
|- ( ( A e. NN /\ B e. NN /\ N e. NN0 ) -> ( A ^ N ) e. ZZ ) |
10 |
|
nnexpcl |
|- ( ( B e. NN /\ N e. NN0 ) -> ( B ^ N ) e. NN ) |
11 |
10
|
3adant1 |
|- ( ( A e. NN /\ B e. NN /\ N e. NN0 ) -> ( B ^ N ) e. NN ) |
12 |
11
|
nnzd |
|- ( ( A e. NN /\ B e. NN /\ N e. NN0 ) -> ( B ^ N ) e. ZZ ) |
13 |
|
simpl |
|- ( ( A e. NN /\ B e. NN ) -> A e. NN ) |
14 |
13
|
nnzd |
|- ( ( A e. NN /\ B e. NN ) -> A e. ZZ ) |
15 |
|
simpr |
|- ( ( A e. NN /\ B e. NN ) -> B e. NN ) |
16 |
15
|
nnzd |
|- ( ( A e. NN /\ B e. NN ) -> B e. ZZ ) |
17 |
|
gcddvds |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
18 |
14 16 17
|
syl2anc |
|- ( ( A e. NN /\ B e. NN ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
19 |
18
|
3adant3 |
|- ( ( A e. NN /\ B e. NN /\ N e. NN0 ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
20 |
19
|
simpld |
|- ( ( A e. NN /\ B e. NN /\ N e. NN0 ) -> ( A gcd B ) || A ) |
21 |
2
|
nnzd |
|- ( ( A e. NN /\ B e. NN /\ N e. NN0 ) -> ( A gcd B ) e. ZZ ) |
22 |
|
simp1 |
|- ( ( A e. NN /\ B e. NN /\ N e. NN0 ) -> A e. NN ) |
23 |
22
|
nnzd |
|- ( ( A e. NN /\ B e. NN /\ N e. NN0 ) -> A e. ZZ ) |
24 |
|
dvdsexpim |
|- ( ( ( A gcd B ) e. ZZ /\ A e. ZZ /\ N e. NN0 ) -> ( ( A gcd B ) || A -> ( ( A gcd B ) ^ N ) || ( A ^ N ) ) ) |
25 |
21 23 3 24
|
syl3anc |
|- ( ( A e. NN /\ B e. NN /\ N e. NN0 ) -> ( ( A gcd B ) || A -> ( ( A gcd B ) ^ N ) || ( A ^ N ) ) ) |
26 |
20 25
|
mpd |
|- ( ( A e. NN /\ B e. NN /\ N e. NN0 ) -> ( ( A gcd B ) ^ N ) || ( A ^ N ) ) |
27 |
19
|
simprd |
|- ( ( A e. NN /\ B e. NN /\ N e. NN0 ) -> ( A gcd B ) || B ) |
28 |
|
simp2 |
|- ( ( A e. NN /\ B e. NN /\ N e. NN0 ) -> B e. NN ) |
29 |
28
|
nnzd |
|- ( ( A e. NN /\ B e. NN /\ N e. NN0 ) -> B e. ZZ ) |
30 |
|
dvdsexpim |
|- ( ( ( A gcd B ) e. ZZ /\ B e. ZZ /\ N e. NN0 ) -> ( ( A gcd B ) || B -> ( ( A gcd B ) ^ N ) || ( B ^ N ) ) ) |
31 |
21 29 3 30
|
syl3anc |
|- ( ( A e. NN /\ B e. NN /\ N e. NN0 ) -> ( ( A gcd B ) || B -> ( ( A gcd B ) ^ N ) || ( B ^ N ) ) ) |
32 |
27 31
|
mpd |
|- ( ( A e. NN /\ B e. NN /\ N e. NN0 ) -> ( ( A gcd B ) ^ N ) || ( B ^ N ) ) |
33 |
|
gcddiv |
|- ( ( ( ( A ^ N ) e. ZZ /\ ( B ^ N ) e. ZZ /\ ( ( A gcd B ) ^ N ) e. NN ) /\ ( ( ( A gcd B ) ^ N ) || ( A ^ N ) /\ ( ( A gcd B ) ^ N ) || ( B ^ N ) ) ) -> ( ( ( A ^ N ) gcd ( B ^ N ) ) / ( ( A gcd B ) ^ N ) ) = ( ( ( A ^ N ) / ( ( A gcd B ) ^ N ) ) gcd ( ( B ^ N ) / ( ( A gcd B ) ^ N ) ) ) ) |
34 |
9 12 4 26 32 33
|
syl32anc |
|- ( ( A e. NN /\ B e. NN /\ N e. NN0 ) -> ( ( ( A ^ N ) gcd ( B ^ N ) ) / ( ( A gcd B ) ^ N ) ) = ( ( ( A ^ N ) / ( ( A gcd B ) ^ N ) ) gcd ( ( B ^ N ) / ( ( A gcd B ) ^ N ) ) ) ) |
35 |
|
nncn |
|- ( A e. NN -> A e. CC ) |
36 |
35
|
3ad2ant1 |
|- ( ( A e. NN /\ B e. NN /\ N e. NN0 ) -> A e. CC ) |
37 |
2
|
nncnd |
|- ( ( A e. NN /\ B e. NN /\ N e. NN0 ) -> ( A gcd B ) e. CC ) |
38 |
2
|
nnne0d |
|- ( ( A e. NN /\ B e. NN /\ N e. NN0 ) -> ( A gcd B ) =/= 0 ) |
39 |
36 37 38 3
|
expdivd |
|- ( ( A e. NN /\ B e. NN /\ N e. NN0 ) -> ( ( A / ( A gcd B ) ) ^ N ) = ( ( A ^ N ) / ( ( A gcd B ) ^ N ) ) ) |
40 |
|
nncn |
|- ( B e. NN -> B e. CC ) |
41 |
40
|
3ad2ant2 |
|- ( ( A e. NN /\ B e. NN /\ N e. NN0 ) -> B e. CC ) |
42 |
41 37 38 3
|
expdivd |
|- ( ( A e. NN /\ B e. NN /\ N e. NN0 ) -> ( ( B / ( A gcd B ) ) ^ N ) = ( ( B ^ N ) / ( ( A gcd B ) ^ N ) ) ) |
43 |
39 42
|
oveq12d |
|- ( ( A e. NN /\ B e. NN /\ N e. NN0 ) -> ( ( ( A / ( A gcd B ) ) ^ N ) gcd ( ( B / ( A gcd B ) ) ^ N ) ) = ( ( ( A ^ N ) / ( ( A gcd B ) ^ N ) ) gcd ( ( B ^ N ) / ( ( A gcd B ) ^ N ) ) ) ) |
44 |
|
gcddiv |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ ( A gcd B ) e. NN ) /\ ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) -> ( ( A gcd B ) / ( A gcd B ) ) = ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) ) |
45 |
23 29 2 19 44
|
syl31anc |
|- ( ( A e. NN /\ B e. NN /\ N e. NN0 ) -> ( ( A gcd B ) / ( A gcd B ) ) = ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) ) |
46 |
37 38
|
dividd |
|- ( ( A e. NN /\ B e. NN /\ N e. NN0 ) -> ( ( A gcd B ) / ( A gcd B ) ) = 1 ) |
47 |
45 46
|
eqtr3d |
|- ( ( A e. NN /\ B e. NN /\ N e. NN0 ) -> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 ) |
48 |
|
divgcdnn |
|- ( ( A e. NN /\ B e. ZZ ) -> ( A / ( A gcd B ) ) e. NN ) |
49 |
22 29 48
|
syl2anc |
|- ( ( A e. NN /\ B e. NN /\ N e. NN0 ) -> ( A / ( A gcd B ) ) e. NN ) |
50 |
49
|
nnnn0d |
|- ( ( A e. NN /\ B e. NN /\ N e. NN0 ) -> ( A / ( A gcd B ) ) e. NN0 ) |
51 |
|
divgcdnnr |
|- ( ( B e. NN /\ A e. ZZ ) -> ( B / ( A gcd B ) ) e. NN ) |
52 |
28 23 51
|
syl2anc |
|- ( ( A e. NN /\ B e. NN /\ N e. NN0 ) -> ( B / ( A gcd B ) ) e. NN ) |
53 |
52
|
nnnn0d |
|- ( ( A e. NN /\ B e. NN /\ N e. NN0 ) -> ( B / ( A gcd B ) ) e. NN0 ) |
54 |
|
nn0rppwr |
|- ( ( ( A / ( A gcd B ) ) e. NN0 /\ ( B / ( A gcd B ) ) e. NN0 /\ N e. NN0 ) -> ( ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 -> ( ( ( A / ( A gcd B ) ) ^ N ) gcd ( ( B / ( A gcd B ) ) ^ N ) ) = 1 ) ) |
55 |
50 53 3 54
|
syl3anc |
|- ( ( A e. NN /\ B e. NN /\ N e. NN0 ) -> ( ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 -> ( ( ( A / ( A gcd B ) ) ^ N ) gcd ( ( B / ( A gcd B ) ) ^ N ) ) = 1 ) ) |
56 |
47 55
|
mpd |
|- ( ( A e. NN /\ B e. NN /\ N e. NN0 ) -> ( ( ( A / ( A gcd B ) ) ^ N ) gcd ( ( B / ( A gcd B ) ) ^ N ) ) = 1 ) |
57 |
34 43 56
|
3eqtr2d |
|- ( ( A e. NN /\ B e. NN /\ N e. NN0 ) -> ( ( ( A ^ N ) gcd ( B ^ N ) ) / ( ( A gcd B ) ^ N ) ) = 1 ) |
58 |
|
gcdnncl |
|- ( ( ( A ^ N ) e. NN /\ ( B ^ N ) e. NN ) -> ( ( A ^ N ) gcd ( B ^ N ) ) e. NN ) |
59 |
58
|
nncnd |
|- ( ( ( A ^ N ) e. NN /\ ( B ^ N ) e. NN ) -> ( ( A ^ N ) gcd ( B ^ N ) ) e. CC ) |
60 |
8 11 59
|
syl2anc |
|- ( ( A e. NN /\ B e. NN /\ N e. NN0 ) -> ( ( A ^ N ) gcd ( B ^ N ) ) e. CC ) |
61 |
4
|
nnne0d |
|- ( ( A e. NN /\ B e. NN /\ N e. NN0 ) -> ( ( A gcd B ) ^ N ) =/= 0 ) |
62 |
|
ax-1cn |
|- 1 e. CC |
63 |
|
divmul |
|- ( ( ( ( A ^ N ) gcd ( B ^ N ) ) e. CC /\ 1 e. CC /\ ( ( ( A gcd B ) ^ N ) e. CC /\ ( ( A gcd B ) ^ N ) =/= 0 ) ) -> ( ( ( ( A ^ N ) gcd ( B ^ N ) ) / ( ( A gcd B ) ^ N ) ) = 1 <-> ( ( ( A gcd B ) ^ N ) x. 1 ) = ( ( A ^ N ) gcd ( B ^ N ) ) ) ) |
64 |
62 63
|
mp3an2 |
|- ( ( ( ( A ^ N ) gcd ( B ^ N ) ) e. CC /\ ( ( ( A gcd B ) ^ N ) e. CC /\ ( ( A gcd B ) ^ N ) =/= 0 ) ) -> ( ( ( ( A ^ N ) gcd ( B ^ N ) ) / ( ( A gcd B ) ^ N ) ) = 1 <-> ( ( ( A gcd B ) ^ N ) x. 1 ) = ( ( A ^ N ) gcd ( B ^ N ) ) ) ) |
65 |
60 5 61 64
|
syl12anc |
|- ( ( A e. NN /\ B e. NN /\ N e. NN0 ) -> ( ( ( ( A ^ N ) gcd ( B ^ N ) ) / ( ( A gcd B ) ^ N ) ) = 1 <-> ( ( ( A gcd B ) ^ N ) x. 1 ) = ( ( A ^ N ) gcd ( B ^ N ) ) ) ) |
66 |
57 65
|
mpbid |
|- ( ( A e. NN /\ B e. NN /\ N e. NN0 ) -> ( ( ( A gcd B ) ^ N ) x. 1 ) = ( ( A ^ N ) gcd ( B ^ N ) ) ) |
67 |
6 66
|
eqtr3d |
|- ( ( A e. NN /\ B e. NN /\ N e. NN0 ) -> ( ( A gcd B ) ^ N ) = ( ( A ^ N ) gcd ( B ^ N ) ) ) |