Step |
Hyp |
Ref |
Expression |
1 |
|
gcdnncl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) |
2 |
1
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) |
3 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) |
4 |
2 3
|
nnexpcld |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ∈ ℕ ) |
5 |
4
|
nncnd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ∈ ℂ ) |
6 |
5
|
mulid1d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) · 1 ) = ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ) |
7 |
|
nnexpcl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) ∈ ℕ ) |
8 |
7
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) ∈ ℕ ) |
9 |
8
|
nnzd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) |
10 |
|
nnexpcl |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐵 ↑ 𝑁 ) ∈ ℕ ) |
11 |
10
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐵 ↑ 𝑁 ) ∈ ℕ ) |
12 |
11
|
nnzd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐵 ↑ 𝑁 ) ∈ ℤ ) |
13 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 𝐴 ∈ ℕ ) |
14 |
13
|
nnzd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 𝐴 ∈ ℤ ) |
15 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℕ ) |
16 |
15
|
nnzd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℤ ) |
17 |
|
gcddvds |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) |
18 |
14 16 17
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) |
19 |
18
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) |
20 |
19
|
simpld |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ) |
21 |
2
|
nnzd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 gcd 𝐵 ) ∈ ℤ ) |
22 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝐴 ∈ ℕ ) |
23 |
22
|
nnzd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝐴 ∈ ℤ ) |
24 |
|
dvdsexpim |
⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 → ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ∥ ( 𝐴 ↑ 𝑁 ) ) ) |
25 |
21 23 3 24
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 → ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ∥ ( 𝐴 ↑ 𝑁 ) ) ) |
26 |
20 25
|
mpd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ∥ ( 𝐴 ↑ 𝑁 ) ) |
27 |
19
|
simprd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) |
28 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝐵 ∈ ℕ ) |
29 |
28
|
nnzd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝐵 ∈ ℤ ) |
30 |
|
dvdsexpim |
⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐵 → ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) ) |
31 |
21 29 3 30
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐵 → ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) ) |
32 |
27 31
|
mpd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) |
33 |
|
gcddiv |
⊢ ( ( ( ( 𝐴 ↑ 𝑁 ) ∈ ℤ ∧ ( 𝐵 ↑ 𝑁 ) ∈ ℤ ∧ ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ∈ ℕ ) ∧ ( ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ∥ ( 𝐴 ↑ 𝑁 ) ∧ ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) ) → ( ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) / ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ) = ( ( ( 𝐴 ↑ 𝑁 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ) gcd ( ( 𝐵 ↑ 𝑁 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ) ) ) |
34 |
9 12 4 26 32 33
|
syl32anc |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) / ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ) = ( ( ( 𝐴 ↑ 𝑁 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ) gcd ( ( 𝐵 ↑ 𝑁 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ) ) ) |
35 |
|
nncn |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℂ ) |
36 |
35
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
37 |
2
|
nncnd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 gcd 𝐵 ) ∈ ℂ ) |
38 |
2
|
nnne0d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 gcd 𝐵 ) ≠ 0 ) |
39 |
36 37 38 3
|
expdivd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ↑ 𝑁 ) = ( ( 𝐴 ↑ 𝑁 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ) ) |
40 |
|
nncn |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℂ ) |
41 |
40
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝐵 ∈ ℂ ) |
42 |
41 37 38 3
|
expdivd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ↑ 𝑁 ) = ( ( 𝐵 ↑ 𝑁 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ) ) |
43 |
39 42
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ↑ 𝑁 ) gcd ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ↑ 𝑁 ) ) = ( ( ( 𝐴 ↑ 𝑁 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ) gcd ( ( 𝐵 ↑ 𝑁 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ) ) ) |
44 |
|
gcddiv |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐴 gcd 𝐵 ) ∈ ℕ ) ∧ ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) → ( ( 𝐴 gcd 𝐵 ) / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) |
45 |
23 29 2 19 44
|
syl31anc |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐵 ) / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) |
46 |
37 38
|
dividd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐵 ) / ( 𝐴 gcd 𝐵 ) ) = 1 ) |
47 |
45 46
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) |
48 |
|
divgcdnn |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ) |
49 |
22 29 48
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ) |
50 |
49
|
nnnn0d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ0 ) |
51 |
|
divgcdnnr |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐴 ∈ ℤ ) → ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ) |
52 |
28 23 51
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ) |
53 |
52
|
nnnn0d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ0 ) |
54 |
|
nn0rppwr |
⊢ ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ0 ∧ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 → ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ↑ 𝑁 ) gcd ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ↑ 𝑁 ) ) = 1 ) ) |
55 |
50 53 3 54
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 → ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ↑ 𝑁 ) gcd ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ↑ 𝑁 ) ) = 1 ) ) |
56 |
47 55
|
mpd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ↑ 𝑁 ) gcd ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ↑ 𝑁 ) ) = 1 ) |
57 |
34 43 56
|
3eqtr2d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) / ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ) = 1 ) |
58 |
|
gcdnncl |
⊢ ( ( ( 𝐴 ↑ 𝑁 ) ∈ ℕ ∧ ( 𝐵 ↑ 𝑁 ) ∈ ℕ ) → ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) ∈ ℕ ) |
59 |
58
|
nncnd |
⊢ ( ( ( 𝐴 ↑ 𝑁 ) ∈ ℕ ∧ ( 𝐵 ↑ 𝑁 ) ∈ ℕ ) → ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) ∈ ℂ ) |
60 |
8 11 59
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) ∈ ℂ ) |
61 |
4
|
nnne0d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ≠ 0 ) |
62 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
63 |
|
divmul |
⊢ ( ( ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ∈ ℂ ∧ ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ≠ 0 ) ) → ( ( ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) / ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ) = 1 ↔ ( ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) · 1 ) = ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) ) ) |
64 |
62 63
|
mp3an2 |
⊢ ( ( ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) ∈ ℂ ∧ ( ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ∈ ℂ ∧ ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ≠ 0 ) ) → ( ( ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) / ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ) = 1 ↔ ( ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) · 1 ) = ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) ) ) |
65 |
60 5 61 64
|
syl12anc |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) / ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ) = 1 ↔ ( ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) · 1 ) = ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) ) ) |
66 |
57 65
|
mpbid |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) · 1 ) = ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) ) |
67 |
6 66
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) = ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) ) |