Metamath Proof Explorer


Theorem divgcdnnr

Description: A positive integer divided by the gcd of it and another integer is a positive integer. (Contributed by AV, 10-Jul-2021)

Ref Expression
Assertion divgcdnnr ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 / ( 𝐵 gcd 𝐴 ) ) ∈ ℕ )

Proof

Step Hyp Ref Expression
1 nnz ( 𝐴 ∈ ℕ → 𝐴 ∈ ℤ )
2 gcdcom ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) = ( 𝐵 gcd 𝐴 ) )
3 1 2 sylan ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) = ( 𝐵 gcd 𝐴 ) )
4 3 eqcomd ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ) → ( 𝐵 gcd 𝐴 ) = ( 𝐴 gcd 𝐵 ) )
5 4 oveq2d ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 / ( 𝐵 gcd 𝐴 ) ) = ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) )
6 divgcdnn ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ )
7 5 6 eqeltrd ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 / ( 𝐵 gcd 𝐴 ) ) ∈ ℕ )