Description: A positive integer divided by the gcd of it and another integer is a positive integer. (Contributed by AV, 10-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | divgcdnnr | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 / ( 𝐵 gcd 𝐴 ) ) ∈ ℕ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnz | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℤ ) | |
2 | gcdcom | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) = ( 𝐵 gcd 𝐴 ) ) | |
3 | 1 2 | sylan | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) = ( 𝐵 gcd 𝐴 ) ) |
4 | 3 | eqcomd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ) → ( 𝐵 gcd 𝐴 ) = ( 𝐴 gcd 𝐵 ) ) |
5 | 4 | oveq2d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 / ( 𝐵 gcd 𝐴 ) ) = ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) |
6 | divgcdnn | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ) | |
7 | 5 6 | eqeltrd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 / ( 𝐵 gcd 𝐴 ) ) ∈ ℕ ) |