| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gcdnncl |
|
| 2 |
1
|
3adant3 |
|
| 3 |
|
simp3 |
|
| 4 |
2 3
|
nnexpcld |
|
| 5 |
4
|
nncnd |
|
| 6 |
5
|
mulridd |
|
| 7 |
|
nnexpcl |
|
| 8 |
7
|
3adant2 |
|
| 9 |
8
|
nnzd |
|
| 10 |
|
nnexpcl |
|
| 11 |
10
|
3adant1 |
|
| 12 |
11
|
nnzd |
|
| 13 |
|
simpl |
|
| 14 |
13
|
nnzd |
|
| 15 |
|
simpr |
|
| 16 |
15
|
nnzd |
|
| 17 |
|
gcddvds |
|
| 18 |
14 16 17
|
syl2anc |
|
| 19 |
18
|
3adant3 |
|
| 20 |
19
|
simpld |
|
| 21 |
2
|
nnzd |
|
| 22 |
|
simp1 |
|
| 23 |
22
|
nnzd |
|
| 24 |
|
dvdsexpim |
|
| 25 |
21 23 3 24
|
syl3anc |
|
| 26 |
20 25
|
mpd |
|
| 27 |
19
|
simprd |
|
| 28 |
|
simp2 |
|
| 29 |
28
|
nnzd |
|
| 30 |
|
dvdsexpim |
|
| 31 |
21 29 3 30
|
syl3anc |
|
| 32 |
27 31
|
mpd |
|
| 33 |
|
gcddiv |
|
| 34 |
9 12 4 26 32 33
|
syl32anc |
|
| 35 |
|
nncn |
|
| 36 |
35
|
3ad2ant1 |
|
| 37 |
2
|
nncnd |
|
| 38 |
2
|
nnne0d |
|
| 39 |
36 37 38 3
|
expdivd |
|
| 40 |
|
nncn |
|
| 41 |
40
|
3ad2ant2 |
|
| 42 |
41 37 38 3
|
expdivd |
|
| 43 |
39 42
|
oveq12d |
|
| 44 |
|
gcddiv |
|
| 45 |
23 29 2 19 44
|
syl31anc |
|
| 46 |
37 38
|
dividd |
|
| 47 |
45 46
|
eqtr3d |
|
| 48 |
|
divgcdnn |
|
| 49 |
22 29 48
|
syl2anc |
|
| 50 |
49
|
nnnn0d |
|
| 51 |
|
divgcdnnr |
|
| 52 |
28 23 51
|
syl2anc |
|
| 53 |
52
|
nnnn0d |
|
| 54 |
|
nn0rppwr |
|
| 55 |
50 53 3 54
|
syl3anc |
|
| 56 |
47 55
|
mpd |
|
| 57 |
34 43 56
|
3eqtr2d |
|
| 58 |
|
gcdnncl |
|
| 59 |
58
|
nncnd |
|
| 60 |
8 11 59
|
syl2anc |
|
| 61 |
4
|
nnne0d |
|
| 62 |
|
ax-1cn |
|
| 63 |
|
divmul |
|
| 64 |
62 63
|
mp3an2 |
|
| 65 |
60 5 61 64
|
syl12anc |
|
| 66 |
57 65
|
mpbid |
|
| 67 |
6 66
|
eqtr3d |
|