Step |
Hyp |
Ref |
Expression |
1 |
|
gcdnncl |
|
2 |
1
|
3adant3 |
|
3 |
|
simp3 |
|
4 |
2 3
|
nnexpcld |
|
5 |
4
|
nncnd |
|
6 |
5
|
mulid1d |
|
7 |
|
nnexpcl |
|
8 |
7
|
3adant2 |
|
9 |
8
|
nnzd |
|
10 |
|
nnexpcl |
|
11 |
10
|
3adant1 |
|
12 |
11
|
nnzd |
|
13 |
|
simpl |
|
14 |
13
|
nnzd |
|
15 |
|
simpr |
|
16 |
15
|
nnzd |
|
17 |
|
gcddvds |
|
18 |
14 16 17
|
syl2anc |
|
19 |
18
|
3adant3 |
|
20 |
19
|
simpld |
|
21 |
2
|
nnzd |
|
22 |
|
simp1 |
|
23 |
22
|
nnzd |
|
24 |
|
dvdsexpim |
|
25 |
21 23 3 24
|
syl3anc |
|
26 |
20 25
|
mpd |
|
27 |
19
|
simprd |
|
28 |
|
simp2 |
|
29 |
28
|
nnzd |
|
30 |
|
dvdsexpim |
|
31 |
21 29 3 30
|
syl3anc |
|
32 |
27 31
|
mpd |
|
33 |
|
gcddiv |
|
34 |
9 12 4 26 32 33
|
syl32anc |
|
35 |
|
nncn |
|
36 |
35
|
3ad2ant1 |
|
37 |
2
|
nncnd |
|
38 |
2
|
nnne0d |
|
39 |
36 37 38 3
|
expdivd |
|
40 |
|
nncn |
|
41 |
40
|
3ad2ant2 |
|
42 |
41 37 38 3
|
expdivd |
|
43 |
39 42
|
oveq12d |
|
44 |
|
gcddiv |
|
45 |
23 29 2 19 44
|
syl31anc |
|
46 |
37 38
|
dividd |
|
47 |
45 46
|
eqtr3d |
|
48 |
|
divgcdnn |
|
49 |
22 29 48
|
syl2anc |
|
50 |
49
|
nnnn0d |
|
51 |
|
divgcdnnr |
|
52 |
28 23 51
|
syl2anc |
|
53 |
52
|
nnnn0d |
|
54 |
|
nn0rppwr |
|
55 |
50 53 3 54
|
syl3anc |
|
56 |
47 55
|
mpd |
|
57 |
34 43 56
|
3eqtr2d |
|
58 |
|
gcdnncl |
|
59 |
58
|
nncnd |
|
60 |
8 11 59
|
syl2anc |
|
61 |
4
|
nnne0d |
|
62 |
|
ax-1cn |
|
63 |
|
divmul |
|
64 |
62 63
|
mp3an2 |
|
65 |
60 5 61 64
|
syl12anc |
|
66 |
57 65
|
mpbid |
|
67 |
6 66
|
eqtr3d |
|