Metamath Proof Explorer


Theorem divgcdnn

Description: A positive integer divided by the gcd of it and another integer is a positive integer. (Contributed by AV, 10-Jul-2021)

Ref Expression
Assertion divgcdnn ABAAgcdB

Proof

Step Hyp Ref Expression
1 nnz AA
2 1 anim1i ABAB
3 gcddvds ABAgcdBAAgcdBB
4 3 simpld ABAgcdBA
5 2 4 syl ABAgcdBA
6 nnne0 AA0
7 6 neneqd A¬A=0
8 7 adantr AB¬A=0
9 8 intnanrd AB¬A=0B=0
10 gcdn0cl AB¬A=0B=0AgcdB
11 2 9 10 syl2anc ABAgcdB
12 nndivdvds AAgcdBAgcdBAAAgcdB
13 11 12 syldan ABAgcdBAAAgcdB
14 5 13 mpbid ABAAgcdB