Metamath Proof Explorer


Theorem gcddiv

Description: Division law for GCD. (Contributed by Scott Fenton, 18-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion gcddiv ABCCACBAgcdBC=ACgcdBC

Proof

Step Hyp Ref Expression
1 nnz CC
2 1 3ad2ant3 ABCC
3 simp1 ABCA
4 divides CACAaaC=A
5 2 3 4 syl2anc ABCCAaaC=A
6 simp2 ABCB
7 divides CBCBbbC=B
8 2 6 7 syl2anc ABCCBbbC=B
9 5 8 anbi12d ABCCACBaaC=AbbC=B
10 reeanv abaC=AbC=BaaC=AbbC=B
11 9 10 bitr4di ABCCACBabaC=AbC=B
12 gcdcl abagcdb0
13 12 nn0cnd abagcdb
14 13 3adant3 abCagcdb
15 nncn CC
16 15 3ad2ant3 abCC
17 nnne0 CC0
18 17 3ad2ant3 abCC0
19 14 16 18 divcan4d abCagcdbCC=agcdb
20 nnnn0 CC0
21 mulgcdr abC0aCgcdbC=agcdbC
22 20 21 syl3an3 abCaCgcdbC=agcdbC
23 22 oveq1d abCaCgcdbCC=agcdbCC
24 zcn aa
25 24 3ad2ant1 abCa
26 25 16 18 divcan4d abCaCC=a
27 zcn bb
28 27 3ad2ant2 abCb
29 28 16 18 divcan4d abCbCC=b
30 26 29 oveq12d abCaCCgcdbCC=agcdb
31 19 23 30 3eqtr4d abCaCgcdbCC=aCCgcdbCC
32 oveq12 aC=AbC=BaCgcdbC=AgcdB
33 32 oveq1d aC=AbC=BaCgcdbCC=AgcdBC
34 oveq1 aC=AaCC=AC
35 oveq1 bC=BbCC=BC
36 34 35 oveqan12d aC=AbC=BaCCgcdbCC=ACgcdBC
37 33 36 eqeq12d aC=AbC=BaCgcdbCC=aCCgcdbCCAgcdBC=ACgcdBC
38 31 37 syl5ibcom abCaC=AbC=BAgcdBC=ACgcdBC
39 38 3expa abCaC=AbC=BAgcdBC=ACgcdBC
40 39 expcom CabaC=AbC=BAgcdBC=ACgcdBC
41 40 rexlimdvv CabaC=AbC=BAgcdBC=ACgcdBC
42 41 3ad2ant3 ABCabaC=AbC=BAgcdBC=ACgcdBC
43 11 42 sylbid ABCCACBAgcdBC=ACgcdBC
44 43 imp ABCCACBAgcdBC=ACgcdBC