Description: Division law for GCD. (Contributed by Scott Fenton, 18-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | gcddiv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnz | |
|
2 | 1 | 3ad2ant3 | |
3 | simp1 | |
|
4 | divides | |
|
5 | 2 3 4 | syl2anc | |
6 | simp2 | |
|
7 | divides | |
|
8 | 2 6 7 | syl2anc | |
9 | 5 8 | anbi12d | |
10 | reeanv | |
|
11 | 9 10 | bitr4di | |
12 | gcdcl | |
|
13 | 12 | nn0cnd | |
14 | 13 | 3adant3 | |
15 | nncn | |
|
16 | 15 | 3ad2ant3 | |
17 | nnne0 | |
|
18 | 17 | 3ad2ant3 | |
19 | 14 16 18 | divcan4d | |
20 | nnnn0 | |
|
21 | mulgcdr | |
|
22 | 20 21 | syl3an3 | |
23 | 22 | oveq1d | |
24 | zcn | |
|
25 | 24 | 3ad2ant1 | |
26 | 25 16 18 | divcan4d | |
27 | zcn | |
|
28 | 27 | 3ad2ant2 | |
29 | 28 16 18 | divcan4d | |
30 | 26 29 | oveq12d | |
31 | 19 23 30 | 3eqtr4d | |
32 | oveq12 | |
|
33 | 32 | oveq1d | |
34 | oveq1 | |
|
35 | oveq1 | |
|
36 | 34 35 | oveqan12d | |
37 | 33 36 | eqeq12d | |
38 | 31 37 | syl5ibcom | |
39 | 38 | 3expa | |
40 | 39 | expcom | |
41 | 40 | rexlimdvv | |
42 | 41 | 3ad2ant3 | |
43 | 11 42 | sylbid | |
44 | 43 | imp | |