Metamath Proof Explorer


Theorem gcdcl

Description: Closure of the gcd operator. (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Assertion gcdcl MNMgcdN0

Proof

Step Hyp Ref Expression
1 oveq12 M=0N=0MgcdN=0gcd0
2 gcd0val 0gcd0=0
3 1 2 eqtrdi M=0N=0MgcdN=0
4 0nn0 00
5 3 4 eqeltrdi M=0N=0MgcdN0
6 5 adantl MNM=0N=0MgcdN0
7 gcdn0cl MN¬M=0N=0MgcdN
8 7 nnnn0d MN¬M=0N=0MgcdN0
9 6 8 pm2.61dan MNMgcdN0