Step |
Hyp |
Ref |
Expression |
1 |
|
elnn0 |
|
2 |
|
elnn0 |
|
3 |
|
elnn0 |
|
4 |
|
rppwr |
|
5 |
4
|
3expia |
|
6 |
|
simp1l |
|
7 |
6
|
oveq1d |
|
8 |
|
0exp |
|
9 |
8
|
3ad2ant2 |
|
10 |
7 9
|
eqtrd |
|
11 |
6
|
oveq1d |
|
12 |
|
simp3 |
|
13 |
|
simp1r |
|
14 |
|
nnz |
|
15 |
|
gcd0id |
|
16 |
14 15
|
syl |
|
17 |
|
nnre |
|
18 |
|
0red |
|
19 |
|
nngt0 |
|
20 |
18 17 19
|
ltled |
|
21 |
17 20
|
absidd |
|
22 |
16 21
|
eqtrd |
|
23 |
13 22
|
syl |
|
24 |
11 12 23
|
3eqtr3rd |
|
25 |
24
|
oveq1d |
|
26 |
|
nnz |
|
27 |
26
|
3ad2ant2 |
|
28 |
|
1exp |
|
29 |
27 28
|
syl |
|
30 |
25 29
|
eqtrd |
|
31 |
10 30
|
oveq12d |
|
32 |
|
1z |
|
33 |
|
gcd0id |
|
34 |
32 33
|
ax-mp |
|
35 |
|
abs1 |
|
36 |
34 35
|
eqtri |
|
37 |
31 36
|
eqtrdi |
|
38 |
37
|
3exp |
|
39 |
|
simp1r |
|
40 |
39
|
oveq2d |
|
41 |
|
simp3 |
|
42 |
|
simp1l |
|
43 |
42
|
nnnn0d |
|
44 |
|
nn0gcdid0 |
|
45 |
43 44
|
syl |
|
46 |
40 41 45
|
3eqtr3rd |
|
47 |
46
|
oveq1d |
|
48 |
26
|
3ad2ant2 |
|
49 |
48 28
|
syl |
|
50 |
47 49
|
eqtrd |
|
51 |
39
|
oveq1d |
|
52 |
8
|
3ad2ant2 |
|
53 |
51 52
|
eqtrd |
|
54 |
50 53
|
oveq12d |
|
55 |
|
1nn0 |
|
56 |
|
nn0gcdid0 |
|
57 |
55 56
|
mp1i |
|
58 |
54 57
|
eqtrd |
|
59 |
58
|
3exp |
|
60 |
|
oveq12 |
|
61 |
|
gcd0val |
|
62 |
|
0ne1 |
|
63 |
61 62
|
eqnetri |
|
64 |
63
|
a1i |
|
65 |
60 64
|
eqnetrd |
|
66 |
65
|
neneqd |
|
67 |
66
|
pm2.21d |
|
68 |
67
|
a1d |
|
69 |
5 38 59 68
|
ccase |
|
70 |
2 3 69
|
syl2anb |
|
71 |
|
oveq2 |
|
72 |
71
|
3ad2ant3 |
|
73 |
|
nn0cn |
|
74 |
73
|
3ad2ant1 |
|
75 |
74
|
exp0d |
|
76 |
72 75
|
eqtrd |
|
77 |
|
oveq2 |
|
78 |
77
|
3ad2ant3 |
|
79 |
|
nn0cn |
|
80 |
79
|
3ad2ant2 |
|
81 |
80
|
exp0d |
|
82 |
78 81
|
eqtrd |
|
83 |
76 82
|
oveq12d |
|
84 |
|
1gcd |
|
85 |
32 84
|
mp1i |
|
86 |
83 85
|
eqtrd |
|
87 |
86
|
3expia |
|
88 |
87
|
a1dd |
|
89 |
70 88
|
jaod |
|
90 |
89
|
3impia |
|
91 |
1 90
|
syl3an3b |
|