| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnn0 |
|- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
| 2 |
|
elnn0 |
|- ( A e. NN0 <-> ( A e. NN \/ A = 0 ) ) |
| 3 |
|
elnn0 |
|- ( B e. NN0 <-> ( B e. NN \/ B = 0 ) ) |
| 4 |
|
rppwr |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( ( A gcd B ) = 1 -> ( ( A ^ N ) gcd ( B ^ N ) ) = 1 ) ) |
| 5 |
4
|
3expia |
|- ( ( A e. NN /\ B e. NN ) -> ( N e. NN -> ( ( A gcd B ) = 1 -> ( ( A ^ N ) gcd ( B ^ N ) ) = 1 ) ) ) |
| 6 |
|
simp1l |
|- ( ( ( A = 0 /\ B e. NN ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> A = 0 ) |
| 7 |
6
|
oveq1d |
|- ( ( ( A = 0 /\ B e. NN ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> ( A ^ N ) = ( 0 ^ N ) ) |
| 8 |
|
0exp |
|- ( N e. NN -> ( 0 ^ N ) = 0 ) |
| 9 |
8
|
3ad2ant2 |
|- ( ( ( A = 0 /\ B e. NN ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> ( 0 ^ N ) = 0 ) |
| 10 |
7 9
|
eqtrd |
|- ( ( ( A = 0 /\ B e. NN ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> ( A ^ N ) = 0 ) |
| 11 |
6
|
oveq1d |
|- ( ( ( A = 0 /\ B e. NN ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> ( A gcd B ) = ( 0 gcd B ) ) |
| 12 |
|
simp3 |
|- ( ( ( A = 0 /\ B e. NN ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> ( A gcd B ) = 1 ) |
| 13 |
|
simp1r |
|- ( ( ( A = 0 /\ B e. NN ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> B e. NN ) |
| 14 |
|
nnz |
|- ( B e. NN -> B e. ZZ ) |
| 15 |
|
gcd0id |
|- ( B e. ZZ -> ( 0 gcd B ) = ( abs ` B ) ) |
| 16 |
14 15
|
syl |
|- ( B e. NN -> ( 0 gcd B ) = ( abs ` B ) ) |
| 17 |
|
nnre |
|- ( B e. NN -> B e. RR ) |
| 18 |
|
0red |
|- ( B e. NN -> 0 e. RR ) |
| 19 |
|
nngt0 |
|- ( B e. NN -> 0 < B ) |
| 20 |
18 17 19
|
ltled |
|- ( B e. NN -> 0 <_ B ) |
| 21 |
17 20
|
absidd |
|- ( B e. NN -> ( abs ` B ) = B ) |
| 22 |
16 21
|
eqtrd |
|- ( B e. NN -> ( 0 gcd B ) = B ) |
| 23 |
13 22
|
syl |
|- ( ( ( A = 0 /\ B e. NN ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> ( 0 gcd B ) = B ) |
| 24 |
11 12 23
|
3eqtr3rd |
|- ( ( ( A = 0 /\ B e. NN ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> B = 1 ) |
| 25 |
24
|
oveq1d |
|- ( ( ( A = 0 /\ B e. NN ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> ( B ^ N ) = ( 1 ^ N ) ) |
| 26 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
| 27 |
26
|
3ad2ant2 |
|- ( ( ( A = 0 /\ B e. NN ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> N e. ZZ ) |
| 28 |
|
1exp |
|- ( N e. ZZ -> ( 1 ^ N ) = 1 ) |
| 29 |
27 28
|
syl |
|- ( ( ( A = 0 /\ B e. NN ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> ( 1 ^ N ) = 1 ) |
| 30 |
25 29
|
eqtrd |
|- ( ( ( A = 0 /\ B e. NN ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> ( B ^ N ) = 1 ) |
| 31 |
10 30
|
oveq12d |
|- ( ( ( A = 0 /\ B e. NN ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> ( ( A ^ N ) gcd ( B ^ N ) ) = ( 0 gcd 1 ) ) |
| 32 |
|
1z |
|- 1 e. ZZ |
| 33 |
|
gcd0id |
|- ( 1 e. ZZ -> ( 0 gcd 1 ) = ( abs ` 1 ) ) |
| 34 |
32 33
|
ax-mp |
|- ( 0 gcd 1 ) = ( abs ` 1 ) |
| 35 |
|
abs1 |
|- ( abs ` 1 ) = 1 |
| 36 |
34 35
|
eqtri |
|- ( 0 gcd 1 ) = 1 |
| 37 |
31 36
|
eqtrdi |
|- ( ( ( A = 0 /\ B e. NN ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> ( ( A ^ N ) gcd ( B ^ N ) ) = 1 ) |
| 38 |
37
|
3exp |
|- ( ( A = 0 /\ B e. NN ) -> ( N e. NN -> ( ( A gcd B ) = 1 -> ( ( A ^ N ) gcd ( B ^ N ) ) = 1 ) ) ) |
| 39 |
|
simp1r |
|- ( ( ( A e. NN /\ B = 0 ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> B = 0 ) |
| 40 |
39
|
oveq2d |
|- ( ( ( A e. NN /\ B = 0 ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> ( A gcd B ) = ( A gcd 0 ) ) |
| 41 |
|
simp3 |
|- ( ( ( A e. NN /\ B = 0 ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> ( A gcd B ) = 1 ) |
| 42 |
|
simp1l |
|- ( ( ( A e. NN /\ B = 0 ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> A e. NN ) |
| 43 |
42
|
nnnn0d |
|- ( ( ( A e. NN /\ B = 0 ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> A e. NN0 ) |
| 44 |
|
nn0gcdid0 |
|- ( A e. NN0 -> ( A gcd 0 ) = A ) |
| 45 |
43 44
|
syl |
|- ( ( ( A e. NN /\ B = 0 ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> ( A gcd 0 ) = A ) |
| 46 |
40 41 45
|
3eqtr3rd |
|- ( ( ( A e. NN /\ B = 0 ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> A = 1 ) |
| 47 |
46
|
oveq1d |
|- ( ( ( A e. NN /\ B = 0 ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> ( A ^ N ) = ( 1 ^ N ) ) |
| 48 |
26
|
3ad2ant2 |
|- ( ( ( A e. NN /\ B = 0 ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> N e. ZZ ) |
| 49 |
48 28
|
syl |
|- ( ( ( A e. NN /\ B = 0 ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> ( 1 ^ N ) = 1 ) |
| 50 |
47 49
|
eqtrd |
|- ( ( ( A e. NN /\ B = 0 ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> ( A ^ N ) = 1 ) |
| 51 |
39
|
oveq1d |
|- ( ( ( A e. NN /\ B = 0 ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> ( B ^ N ) = ( 0 ^ N ) ) |
| 52 |
8
|
3ad2ant2 |
|- ( ( ( A e. NN /\ B = 0 ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> ( 0 ^ N ) = 0 ) |
| 53 |
51 52
|
eqtrd |
|- ( ( ( A e. NN /\ B = 0 ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> ( B ^ N ) = 0 ) |
| 54 |
50 53
|
oveq12d |
|- ( ( ( A e. NN /\ B = 0 ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> ( ( A ^ N ) gcd ( B ^ N ) ) = ( 1 gcd 0 ) ) |
| 55 |
|
1nn0 |
|- 1 e. NN0 |
| 56 |
|
nn0gcdid0 |
|- ( 1 e. NN0 -> ( 1 gcd 0 ) = 1 ) |
| 57 |
55 56
|
mp1i |
|- ( ( ( A e. NN /\ B = 0 ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> ( 1 gcd 0 ) = 1 ) |
| 58 |
54 57
|
eqtrd |
|- ( ( ( A e. NN /\ B = 0 ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> ( ( A ^ N ) gcd ( B ^ N ) ) = 1 ) |
| 59 |
58
|
3exp |
|- ( ( A e. NN /\ B = 0 ) -> ( N e. NN -> ( ( A gcd B ) = 1 -> ( ( A ^ N ) gcd ( B ^ N ) ) = 1 ) ) ) |
| 60 |
|
oveq12 |
|- ( ( A = 0 /\ B = 0 ) -> ( A gcd B ) = ( 0 gcd 0 ) ) |
| 61 |
|
gcd0val |
|- ( 0 gcd 0 ) = 0 |
| 62 |
|
0ne1 |
|- 0 =/= 1 |
| 63 |
61 62
|
eqnetri |
|- ( 0 gcd 0 ) =/= 1 |
| 64 |
63
|
a1i |
|- ( ( A = 0 /\ B = 0 ) -> ( 0 gcd 0 ) =/= 1 ) |
| 65 |
60 64
|
eqnetrd |
|- ( ( A = 0 /\ B = 0 ) -> ( A gcd B ) =/= 1 ) |
| 66 |
65
|
neneqd |
|- ( ( A = 0 /\ B = 0 ) -> -. ( A gcd B ) = 1 ) |
| 67 |
66
|
pm2.21d |
|- ( ( A = 0 /\ B = 0 ) -> ( ( A gcd B ) = 1 -> ( ( A ^ N ) gcd ( B ^ N ) ) = 1 ) ) |
| 68 |
67
|
a1d |
|- ( ( A = 0 /\ B = 0 ) -> ( N e. NN -> ( ( A gcd B ) = 1 -> ( ( A ^ N ) gcd ( B ^ N ) ) = 1 ) ) ) |
| 69 |
5 38 59 68
|
ccase |
|- ( ( ( A e. NN \/ A = 0 ) /\ ( B e. NN \/ B = 0 ) ) -> ( N e. NN -> ( ( A gcd B ) = 1 -> ( ( A ^ N ) gcd ( B ^ N ) ) = 1 ) ) ) |
| 70 |
2 3 69
|
syl2anb |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( N e. NN -> ( ( A gcd B ) = 1 -> ( ( A ^ N ) gcd ( B ^ N ) ) = 1 ) ) ) |
| 71 |
|
oveq2 |
|- ( N = 0 -> ( A ^ N ) = ( A ^ 0 ) ) |
| 72 |
71
|
3ad2ant3 |
|- ( ( A e. NN0 /\ B e. NN0 /\ N = 0 ) -> ( A ^ N ) = ( A ^ 0 ) ) |
| 73 |
|
nn0cn |
|- ( A e. NN0 -> A e. CC ) |
| 74 |
73
|
3ad2ant1 |
|- ( ( A e. NN0 /\ B e. NN0 /\ N = 0 ) -> A e. CC ) |
| 75 |
74
|
exp0d |
|- ( ( A e. NN0 /\ B e. NN0 /\ N = 0 ) -> ( A ^ 0 ) = 1 ) |
| 76 |
72 75
|
eqtrd |
|- ( ( A e. NN0 /\ B e. NN0 /\ N = 0 ) -> ( A ^ N ) = 1 ) |
| 77 |
|
oveq2 |
|- ( N = 0 -> ( B ^ N ) = ( B ^ 0 ) ) |
| 78 |
77
|
3ad2ant3 |
|- ( ( A e. NN0 /\ B e. NN0 /\ N = 0 ) -> ( B ^ N ) = ( B ^ 0 ) ) |
| 79 |
|
nn0cn |
|- ( B e. NN0 -> B e. CC ) |
| 80 |
79
|
3ad2ant2 |
|- ( ( A e. NN0 /\ B e. NN0 /\ N = 0 ) -> B e. CC ) |
| 81 |
80
|
exp0d |
|- ( ( A e. NN0 /\ B e. NN0 /\ N = 0 ) -> ( B ^ 0 ) = 1 ) |
| 82 |
78 81
|
eqtrd |
|- ( ( A e. NN0 /\ B e. NN0 /\ N = 0 ) -> ( B ^ N ) = 1 ) |
| 83 |
76 82
|
oveq12d |
|- ( ( A e. NN0 /\ B e. NN0 /\ N = 0 ) -> ( ( A ^ N ) gcd ( B ^ N ) ) = ( 1 gcd 1 ) ) |
| 84 |
|
1gcd |
|- ( 1 e. ZZ -> ( 1 gcd 1 ) = 1 ) |
| 85 |
32 84
|
mp1i |
|- ( ( A e. NN0 /\ B e. NN0 /\ N = 0 ) -> ( 1 gcd 1 ) = 1 ) |
| 86 |
83 85
|
eqtrd |
|- ( ( A e. NN0 /\ B e. NN0 /\ N = 0 ) -> ( ( A ^ N ) gcd ( B ^ N ) ) = 1 ) |
| 87 |
86
|
3expia |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( N = 0 -> ( ( A ^ N ) gcd ( B ^ N ) ) = 1 ) ) |
| 88 |
87
|
a1dd |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( N = 0 -> ( ( A gcd B ) = 1 -> ( ( A ^ N ) gcd ( B ^ N ) ) = 1 ) ) ) |
| 89 |
70 88
|
jaod |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( ( N e. NN \/ N = 0 ) -> ( ( A gcd B ) = 1 -> ( ( A ^ N ) gcd ( B ^ N ) ) = 1 ) ) ) |
| 90 |
89
|
3impia |
|- ( ( A e. NN0 /\ B e. NN0 /\ ( N e. NN \/ N = 0 ) ) -> ( ( A gcd B ) = 1 -> ( ( A ^ N ) gcd ( B ^ N ) ) = 1 ) ) |
| 91 |
1 90
|
syl3an3b |
|- ( ( A e. NN0 /\ B e. NN0 /\ N e. NN0 ) -> ( ( A gcd B ) = 1 -> ( ( A ^ N ) gcd ( B ^ N ) ) = 1 ) ) |