| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpexp1i |
|- ( ( A e. ZZ /\ B e. ZZ /\ M e. NN0 ) -> ( ( A gcd B ) = 1 -> ( ( A ^ M ) gcd B ) = 1 ) ) |
| 2 |
1
|
3adant3r |
|- ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( A gcd B ) = 1 -> ( ( A ^ M ) gcd B ) = 1 ) ) |
| 3 |
|
simp2 |
|- ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> B e. ZZ ) |
| 4 |
|
simp1 |
|- ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> A e. ZZ ) |
| 5 |
|
simp3l |
|- ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> M e. NN0 ) |
| 6 |
|
zexpcl |
|- ( ( A e. ZZ /\ M e. NN0 ) -> ( A ^ M ) e. ZZ ) |
| 7 |
4 5 6
|
syl2anc |
|- ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( A ^ M ) e. ZZ ) |
| 8 |
|
simp3r |
|- ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> N e. NN0 ) |
| 9 |
|
rpexp1i |
|- ( ( B e. ZZ /\ ( A ^ M ) e. ZZ /\ N e. NN0 ) -> ( ( B gcd ( A ^ M ) ) = 1 -> ( ( B ^ N ) gcd ( A ^ M ) ) = 1 ) ) |
| 10 |
3 7 8 9
|
syl3anc |
|- ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( B gcd ( A ^ M ) ) = 1 -> ( ( B ^ N ) gcd ( A ^ M ) ) = 1 ) ) |
| 11 |
7 3
|
gcdcomd |
|- ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( A ^ M ) gcd B ) = ( B gcd ( A ^ M ) ) ) |
| 12 |
11
|
eqeq1d |
|- ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( ( A ^ M ) gcd B ) = 1 <-> ( B gcd ( A ^ M ) ) = 1 ) ) |
| 13 |
|
zexpcl |
|- ( ( B e. ZZ /\ N e. NN0 ) -> ( B ^ N ) e. ZZ ) |
| 14 |
3 8 13
|
syl2anc |
|- ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( B ^ N ) e. ZZ ) |
| 15 |
7 14
|
gcdcomd |
|- ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( A ^ M ) gcd ( B ^ N ) ) = ( ( B ^ N ) gcd ( A ^ M ) ) ) |
| 16 |
15
|
eqeq1d |
|- ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( ( A ^ M ) gcd ( B ^ N ) ) = 1 <-> ( ( B ^ N ) gcd ( A ^ M ) ) = 1 ) ) |
| 17 |
10 12 16
|
3imtr4d |
|- ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( ( A ^ M ) gcd B ) = 1 -> ( ( A ^ M ) gcd ( B ^ N ) ) = 1 ) ) |
| 18 |
2 17
|
syld |
|- ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( A gcd B ) = 1 -> ( ( A ^ M ) gcd ( B ^ N ) ) = 1 ) ) |