| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpexp1i |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐵 ) = 1 → ( ( 𝐴 ↑ 𝑀 ) gcd 𝐵 ) = 1 ) ) |
| 2 |
1
|
3adant3r |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → ( ( 𝐴 gcd 𝐵 ) = 1 → ( ( 𝐴 ↑ 𝑀 ) gcd 𝐵 ) = 1 ) ) |
| 3 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → 𝐵 ∈ ℤ ) |
| 4 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → 𝐴 ∈ ℤ ) |
| 5 |
|
simp3l |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → 𝑀 ∈ ℕ0 ) |
| 6 |
|
zexpcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑀 ) ∈ ℤ ) |
| 7 |
4 5 6
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → ( 𝐴 ↑ 𝑀 ) ∈ ℤ ) |
| 8 |
|
simp3r |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → 𝑁 ∈ ℕ0 ) |
| 9 |
|
rpexp1i |
⊢ ( ( 𝐵 ∈ ℤ ∧ ( 𝐴 ↑ 𝑀 ) ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐵 gcd ( 𝐴 ↑ 𝑀 ) ) = 1 → ( ( 𝐵 ↑ 𝑁 ) gcd ( 𝐴 ↑ 𝑀 ) ) = 1 ) ) |
| 10 |
3 7 8 9
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → ( ( 𝐵 gcd ( 𝐴 ↑ 𝑀 ) ) = 1 → ( ( 𝐵 ↑ 𝑁 ) gcd ( 𝐴 ↑ 𝑀 ) ) = 1 ) ) |
| 11 |
7 3
|
gcdcomd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → ( ( 𝐴 ↑ 𝑀 ) gcd 𝐵 ) = ( 𝐵 gcd ( 𝐴 ↑ 𝑀 ) ) ) |
| 12 |
11
|
eqeq1d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → ( ( ( 𝐴 ↑ 𝑀 ) gcd 𝐵 ) = 1 ↔ ( 𝐵 gcd ( 𝐴 ↑ 𝑀 ) ) = 1 ) ) |
| 13 |
|
zexpcl |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐵 ↑ 𝑁 ) ∈ ℤ ) |
| 14 |
3 8 13
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → ( 𝐵 ↑ 𝑁 ) ∈ ℤ ) |
| 15 |
7 14
|
gcdcomd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → ( ( 𝐴 ↑ 𝑀 ) gcd ( 𝐵 ↑ 𝑁 ) ) = ( ( 𝐵 ↑ 𝑁 ) gcd ( 𝐴 ↑ 𝑀 ) ) ) |
| 16 |
15
|
eqeq1d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → ( ( ( 𝐴 ↑ 𝑀 ) gcd ( 𝐵 ↑ 𝑁 ) ) = 1 ↔ ( ( 𝐵 ↑ 𝑁 ) gcd ( 𝐴 ↑ 𝑀 ) ) = 1 ) ) |
| 17 |
10 12 16
|
3imtr4d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → ( ( ( 𝐴 ↑ 𝑀 ) gcd 𝐵 ) = 1 → ( ( 𝐴 ↑ 𝑀 ) gcd ( 𝐵 ↑ 𝑁 ) ) = 1 ) ) |
| 18 |
2 17
|
syld |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → ( ( 𝐴 gcd 𝐵 ) = 1 → ( ( 𝐴 ↑ 𝑀 ) gcd ( 𝐵 ↑ 𝑁 ) ) = 1 ) ) |