Metamath Proof Explorer


Theorem rppwr

Description: If A and B are relatively prime, then so are A ^ N and B ^ N . (Contributed by Scott Fenton, 12-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion rppwr ABNAgcdB=1ANgcdBN=1

Proof

Step Hyp Ref Expression
1 simp1 ABNA
2 simp3 ABNN
3 2 nnnn0d ABNN0
4 1 3 nnexpcld ABNAN
5 simp2 ABNB
6 4 5 2 3jca ABNANBN
7 rplpwr ABNAgcdB=1ANgcdB=1
8 rprpwr ANBNANgcdB=1ANgcdBN=1
9 6 7 8 sylsyld ABNAgcdB=1ANgcdBN=1