Description: If A and B are relatively prime, then so are A ^ N and B . (Contributed by Scott Fenton, 12-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | rplpwr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 | |
|
2 | 1 | oveq1d | |
3 | 2 | eqeq1d | |
4 | 3 | imbi2d | |
5 | oveq2 | |
|
6 | 5 | oveq1d | |
7 | 6 | eqeq1d | |
8 | 7 | imbi2d | |
9 | oveq2 | |
|
10 | 9 | oveq1d | |
11 | 10 | eqeq1d | |
12 | 11 | imbi2d | |
13 | oveq2 | |
|
14 | 13 | oveq1d | |
15 | 14 | eqeq1d | |
16 | 15 | imbi2d | |
17 | nncn | |
|
18 | 17 | exp1d | |
19 | 18 | oveq1d | |
20 | 19 | adantr | |
21 | 20 | eqeq1d | |
22 | 21 | biimpar | |
23 | df-3an | |
|
24 | simpl1 | |
|
25 | 24 | nncnd | |
26 | simpl3 | |
|
27 | 26 | nnnn0d | |
28 | 25 27 | expp1d | |
29 | simp1 | |
|
30 | nnnn0 | |
|
31 | 30 | 3ad2ant3 | |
32 | 29 31 | nnexpcld | |
33 | 32 | nnzd | |
34 | 33 | adantr | |
35 | 34 | zcnd | |
36 | 35 25 | mulcomd | |
37 | 28 36 | eqtrd | |
38 | 37 | oveq2d | |
39 | simpl2 | |
|
40 | 32 | adantr | |
41 | nnz | |
|
42 | 41 | 3ad2ant1 | |
43 | nnz | |
|
44 | 43 | 3ad2ant2 | |
45 | 42 44 | gcdcomd | |
46 | 45 | eqeq1d | |
47 | 46 | biimpa | |
48 | rpmulgcd | |
|
49 | 39 24 40 47 48 | syl31anc | |
50 | 38 49 | eqtrd | |
51 | peano2nn | |
|
52 | 51 | 3ad2ant3 | |
53 | 52 | adantr | |
54 | 53 | nnnn0d | |
55 | 24 54 | nnexpcld | |
56 | 55 | nnzd | |
57 | 44 | adantr | |
58 | 56 57 | gcdcomd | |
59 | 34 57 | gcdcomd | |
60 | 50 58 59 | 3eqtr4d | |
61 | 60 | eqeq1d | |
62 | 61 | biimprd | |
63 | 23 62 | sylanbr | |
64 | 63 | an32s | |
65 | 64 | expcom | |
66 | 65 | a2d | |
67 | 4 8 12 16 22 66 | nnind | |
68 | 67 | expd | |
69 | 68 | com12 | |
70 | 69 | 3impia | |