Description: If K and M are relatively prime, then the GCD of K and M x. N is the GCD of K and N . (Contributed by Scott Fenton, 12-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | rpmulgcd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gcdmultiple | |
|
2 | 1 | 3adant2 | |
3 | 2 | oveq1d | |
4 | nnz | |
|
5 | 4 | 3ad2ant1 | |
6 | nnz | |
|
7 | zmulcl | |
|
8 | 4 6 7 | syl2an | |
9 | 8 | 3adant2 | |
10 | nnz | |
|
11 | zmulcl | |
|
12 | 10 6 11 | syl2an | |
13 | 12 | 3adant1 | |
14 | gcdass | |
|
15 | 5 9 13 14 | syl3anc | |
16 | 3 15 | eqtr3d | |
17 | 16 | adantr | |
18 | nnnn0 | |
|
19 | mulgcdr | |
|
20 | 4 10 18 19 | syl3an | |
21 | oveq1 | |
|
22 | 20 21 | sylan9eq | |
23 | nncn | |
|
24 | 23 | 3ad2ant3 | |
25 | 24 | adantr | |
26 | 25 | mullidd | |
27 | 22 26 | eqtrd | |
28 | 27 | oveq2d | |
29 | 17 28 | eqtrd | |