Metamath Proof Explorer


Theorem rpmulgcd

Description: If K and M are relatively prime, then the GCD of K and M x. N is the GCD of K and N . (Contributed by Scott Fenton, 12-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion rpmulgcd KMNKgcdM=1Kgcd M N=KgcdN

Proof

Step Hyp Ref Expression
1 gcdmultiple KNKgcdK N=K
2 1 3adant2 KMNKgcdK N=K
3 2 oveq1d KMNKgcdK Ngcd M N=Kgcd M N
4 nnz KK
5 4 3ad2ant1 KMNK
6 nnz NN
7 zmulcl KNK N
8 4 6 7 syl2an KNK N
9 8 3adant2 KMNK N
10 nnz MM
11 zmulcl MN M N
12 10 6 11 syl2an MN M N
13 12 3adant1 KMN M N
14 gcdass KK N M NKgcdK Ngcd M N=KgcdK Ngcd M N
15 5 9 13 14 syl3anc KMNKgcdK Ngcd M N=KgcdK Ngcd M N
16 3 15 eqtr3d KMNKgcd M N=KgcdK Ngcd M N
17 16 adantr KMNKgcdM=1Kgcd M N=KgcdK Ngcd M N
18 nnnn0 NN0
19 mulgcdr KMN0K Ngcd M N=KgcdM N
20 4 10 18 19 syl3an KMNK Ngcd M N=KgcdM N
21 oveq1 KgcdM=1KgcdM N=1 N
22 20 21 sylan9eq KMNKgcdM=1K Ngcd M N=1 N
23 nncn NN
24 23 3ad2ant3 KMNN
25 24 adantr KMNKgcdM=1N
26 25 mullidd KMNKgcdM=11 N=N
27 22 26 eqtrd KMNKgcdM=1K Ngcd M N=N
28 27 oveq2d KMNKgcdM=1KgcdK Ngcd M N=KgcdN
29 17 28 eqtrd KMNKgcdM=1Kgcd M N=KgcdN