| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gcdnncl |
|
| 2 |
1
|
nnsqcld |
|
| 3 |
2
|
nncnd |
|
| 4 |
3
|
mulridd |
|
| 5 |
|
nnsqcl |
|
| 6 |
5
|
nnzd |
|
| 7 |
6
|
adantr |
|
| 8 |
|
nnsqcl |
|
| 9 |
8
|
nnzd |
|
| 10 |
9
|
adantl |
|
| 11 |
|
nnz |
|
| 12 |
|
nnz |
|
| 13 |
|
gcddvds |
|
| 14 |
11 12 13
|
syl2an |
|
| 15 |
14
|
simpld |
|
| 16 |
1
|
nnzd |
|
| 17 |
11
|
adantr |
|
| 18 |
|
dvdssqim |
|
| 19 |
16 17 18
|
syl2anc |
|
| 20 |
15 19
|
mpd |
|
| 21 |
14
|
simprd |
|
| 22 |
12
|
adantl |
|
| 23 |
|
dvdssqim |
|
| 24 |
16 22 23
|
syl2anc |
|
| 25 |
21 24
|
mpd |
|
| 26 |
|
gcddiv |
|
| 27 |
7 10 2 20 25 26
|
syl32anc |
|
| 28 |
|
nncn |
|
| 29 |
28
|
adantr |
|
| 30 |
1
|
nncnd |
|
| 31 |
1
|
nnne0d |
|
| 32 |
29 30 31
|
sqdivd |
|
| 33 |
|
nncn |
|
| 34 |
33
|
adantl |
|
| 35 |
34 30 31
|
sqdivd |
|
| 36 |
32 35
|
oveq12d |
|
| 37 |
|
gcddiv |
|
| 38 |
17 22 1 14 37
|
syl31anc |
|
| 39 |
30 31
|
dividd |
|
| 40 |
38 39
|
eqtr3d |
|
| 41 |
|
dvdsval2 |
|
| 42 |
16 31 17 41
|
syl3anc |
|
| 43 |
15 42
|
mpbid |
|
| 44 |
|
nnre |
|
| 45 |
44
|
adantr |
|
| 46 |
1
|
nnred |
|
| 47 |
|
nngt0 |
|
| 48 |
47
|
adantr |
|
| 49 |
1
|
nngt0d |
|
| 50 |
45 46 48 49
|
divgt0d |
|
| 51 |
|
elnnz |
|
| 52 |
43 50 51
|
sylanbrc |
|
| 53 |
|
dvdsval2 |
|
| 54 |
16 31 22 53
|
syl3anc |
|
| 55 |
21 54
|
mpbid |
|
| 56 |
|
nnre |
|
| 57 |
56
|
adantl |
|
| 58 |
|
nngt0 |
|
| 59 |
58
|
adantl |
|
| 60 |
57 46 59 49
|
divgt0d |
|
| 61 |
|
elnnz |
|
| 62 |
55 60 61
|
sylanbrc |
|
| 63 |
|
2nn |
|
| 64 |
|
rppwr |
|
| 65 |
63 64
|
mp3an3 |
|
| 66 |
52 62 65
|
syl2anc |
|
| 67 |
40 66
|
mpd |
|
| 68 |
27 36 67
|
3eqtr2d |
|
| 69 |
6 9
|
anim12i |
|
| 70 |
5
|
nnne0d |
|
| 71 |
70
|
neneqd |
|
| 72 |
71
|
intnanrd |
|
| 73 |
72
|
adantr |
|
| 74 |
|
gcdn0cl |
|
| 75 |
69 73 74
|
syl2anc |
|
| 76 |
75
|
nncnd |
|
| 77 |
2
|
nnne0d |
|
| 78 |
|
ax-1cn |
|
| 79 |
|
divmul |
|
| 80 |
78 79
|
mp3an2 |
|
| 81 |
76 3 77 80
|
syl12anc |
|
| 82 |
68 81
|
mpbid |
|
| 83 |
4 82
|
eqtr3d |
|